1. Trang chủ
  2. » Khoa Học Tự Nhiên

Front matter

1K 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • 0

    • Front-Matter_2018_Green-Chemistry

      • Green Chemistry: AN INCLUSIVE APPROACH

    • Copyright_2018_Green-Chemistry

      • Copyright

    • List-of-Contributors_2017_Green-Chemistry

      • List of Contributors

    • Preface_2018_Green-Chemistry

      • Preface

  • 1.1

    • 1.1. Green Chemistry: Historical Perspectives and Basic Concepts

      • 1.1.1 Emergence of Green Chemistry

      • 1.1.2 Sustainable Production of Commodities: Principles and Basic Concepts

        • 1.1.2.1 Principles of Green Chemistry

        • 1.1.2.2 Principles of Green Engineering

      • 1.1.3 Green Chemistry and the Environment

      • 1.1.4 Regulatory Agencies

        • 1.1.4.1 International: The United Nations

        • 1.1.4.2 International: International Organization for Standardization

        • 1.1.4.3 United States

        • 1.1.4.4 Canada

        • 1.1.4.5 European Union

        • 1.1.4.6 Russia

        • 1.1.4.7 China

        • 1.1.4.8 India

        • 1.1.4.9 Japan

        • 1.1.4.10 Australia

      • 1.1.5 Closing Thoughts

      • Problems

      • Recommended Reading

  • 2.1

    • 2.1. Environmental Chemistry, Renewable Energy, and Global Policy

      • 2.1.1 Introduction

      • 2.1.2 Environmental Challenges

        • 2.1.2.1 Challenges by Air

        • 2.1.2.2 Challenges by Sea

        • 2.1.2.3 Challenges by Land

      • 2.1.3 Topics in Environmental Chemistry

        • 2.1.3.1 Toxicology

        • 2.1.3.2 Soil Chemistry

        • 2.1.3.3 Atmospheric Chemistry

        • 2.1.3.4 Water Pollution

        • 2.1.3.5 Emerging Contaminants

        • 2.1.3.6 Energy

          • 2.1.3.6.1 Solar

          • 2.1.3.6.2 Organic Fuels

          • 2.1.3.6.3 Wind

          • 2.1.3.6.4 Geothermal

          • 2.1.3.6.5 Nuclear

        • 2.1.3.7 Environmental Policy

      • 2.1.4 Conclusions

      • Problems

      • Recommended Reading

  • 2.2

  • 2.3

    • 2.3. Integrating the Principles of Toxicology Into a Chemistry Curriculum

      • 2.3.1 An Introduction to the Principles of Toxicology

      • 2.3.2 Current Status of Toxicology in Green Chemistry

      • 2.3.3 Current Status of Toxicology in the Chemistry Curriculum

      • 2.3.4 Toxicology as a Core Component of a Complete Chemist's Education

      • 2.3.5 Toxicology, Hazard, and Risk Assessment

      • 2.3.6 Examples of Connecting Chemistry and Toxicology Principles

        • 2.3.6.1 Chemistry Concept: Nucleophilic Substitution

          • 2.3.6.1.1 Toxicology Concept Bridge

        • 2.3.6.2 Chemistry Concept: pH/pKa/Ionization

          • 2.3.6.2.1 Toxicology Concept Bridge

        • 2.3.6.3 Chemistry Concept: Electrophiles

          • 2.3.6.3.1 Toxicology Concept Bridge

        • 2.3.6.4 Chemistry Concept: The Process of Oxidation and Reduction (Redox)

          • 2.3.6.4.1 Toxicology Concept Bridge

        • 2.3.6.5 Chemistry Concept: Molecular Size and Charge Influence Reactivity

          • 2.3.6.5.1 Toxicology Concept Bridge

        • 2.3.6.6 Chemistry Concept: Solvents

          • 2.3.6.6.1 Toxicity Concept Bridge

        • 2.3.6.7 Chemistry Concept: Metals

          • 2.3.6.7.1 Toxicology Concept Bridge

      • 2.3.7 Toxicology and Molecular Design

      • 2.3.8 Conclusions

      • Problems

      • Disclaimer

      • Recommended Reading

  • 2.4

    • 2.4. Effects of Environmental Factors on DNA: Damage and Mutations

      • 2.4.1 DNA Mutations

        • 2.4.1.1 Base Changes

        • 2.4.1.2 Genetic Code

        • 2.4.1.3 Diseases Associated With Base Changes

        • 2.4.1.4 Mutations

        • 2.4.1.5 Base Deletions

        • 2.4.1.6 Base Insertions

        • 2.4.1.7 Deamination

        • 2.4.1.8 Tautomerization

        • 2.4.1.9 Chemical Mutagens

        • 2.4.1.10 Intercalating Agents

      • 2.4.2 Mutagenic Agents That May Affect DNA Sequence or Epigenetics

        • 2.4.2.1 Epigenetics

      • 2.4.3 Transgenerational Inheritance

        • 2.4.3.1 Water Contamination

        • 2.4.3.2 Triclosan

        • 2.4.3.3 Plasticizers

      • 2.4.4 Bisphenol A (4,4′-Isopropylidenediphenol)

        • 2.4.4.1 Phthalates

        • 2.4.4.2 Volatiles

      • 2.4.5 Repair of DNA Damage

        • 2.4.5.1 Photoreactivation

        • 2.4.5.2 Base Excision Repair

        • 2.4.5.3 Nucleotide Excision Repair

        • 2.4.5.4 Mismatch Repair

        • 2.4.5.5 Transcription-Coupled Repair

        • 2.4.5.6 Single- and Double-Strand DNA Break Repair, Recombination Repair

      • Problems

      • Recommended Reading

  • 3.1

    • 3.1. The Natural Atmosphere

      • 3.1.1 Introduction to the Atmosphere

      • 3.1.2 Layers of the Atmosphere

      • 3.1.3 Energy in the Atmosphere

        • 3.1.3.1 Solar Irradiation

        • 3.1.3.2 Terrestrial Radiation

        • 3.1.3.3 Photolysis

      • 3.1.4 Gases in the Atmosphere

        • 3.1.4.1 Measuring Atmospheric Composition

        • 3.1.4.2 Fate of Chemical Species in the Atmosphere

        • 3.1.4.3 Major Gases in the Atmosphere (N2, O2, Ar, Ox, H2O)

        • 3.1.4.4 Oxidants (OH, O3, NO3)

        • 3.1.4.5 Volatile Organic Compounds

        • 3.1.4.6 Greenhouse Gases

      • 3.1.5 Particulate Matter

      • 3.1.6 Clouds

        • 3.1.6.1 Warm Clouds

        • 3.1.6.2 Ice Clouds

      • 3.1.7 Research in Atmospheric Chemistry

      • Recommended Reading

  • 3.2

    • 3.2. Air Pollution and Air Quality

      • 3.2.1 Introduction

      • 3.2.2 Long-Range Transport

      • 3.2.3 Ozone

        • 3.2.3.1 Ozone Formation

        • 3.2.3.2 Ozone Control

        • 3.2.3.3 Regional Ozone

        • 3.2.3.4 Climate Change

      • 3.2.4 Fine Particulate Matter

        • 3.2.4.1 Fine Particulate Matter Definitions

        • 3.2.4.2 Organic Aerosol

          • 3.2.4.2.1 Primary Organic Aerosol

          • 3.2.4.2.2 Secondary Organic Aerosol

        • 3.2.4.3 New Particle Formation

        • 3.2.4.4 Light-Absorbing Carbon

          • 3.2.4.4.1 Black Carbon

          • 3.2.4.4.2 Brown Carbon

        • 3.2.4.5 Exposure

        • 3.2.4.6 Control Efficacy

      • 3.2.5 Conclusion

      • References

  • 3.3

    • 3.3. Stratospheric Ozone Depletion and Recovery

      • 3.3.1 Stratospheric Ozone

      • 3.3.2 Ozone-Depleting Substances

      • 3.3.3 Halogen Chemistry in the Stratosphere

      • 3.3.4 Polar Ozone Loss

      • 3.3.5 Midlatitude Ozone Loss

      • 3.3.6 Future of Stratospheric Ozone

      • 3.3.7 Success of the Montreal Protocol

      • References

  • 3.4

    • 3.4. The Greenhouse Effect, Aerosols, and Climate Change

      • 3.4.1 Fundamentals

      • 3.4.2 Sources and Sinks of Greenhouse Gases

      • 3.4.3 Aerosols and Climate

      • 3.4.4 Physics of Climate

        • 3.4.4.1 Radiative Balance

        • 3.4.4.2 Radiative Transfer

        • 3.4.4.3 Anthropogenic Climate Change in Space and Time

        • 3.4.4.4 Feedbacks and Climate Sensitivity

        • 3.4.4.5 Consequences of Global Warming

        • 3.4.4.6 Sea Level Rise

        • 3.4.4.7 Ecological Consequences of Warming

        • 3.4.4.8 Changes in Precipitation

      • 3.4.5 Technology to Reduce Greenhouse Gas Emissions

      • References

  • 3.5

    • 3.5. Chemistry of Natural Waters

      • 3.5.1 Introduction

      • 3.5.2 Fundamental Chemistry of Water

      • 3.5.3 Acid-Base Interactions

      • 3.5.4 Solubility and Saturation

      • 3.5.5 Complexation

      • 3.5.6 Ionization

      • 3.5.7 Redox Reactions

      • 3.5.8 Persistence

      • 3.5.9 Final Remarks

      • References

  • 3.6

    • 3.6. Water Contamination and Pollution

      • 3.6.1 Introduction

        • 3.6.1.1 What is Water Pollution?

        • 3.6.1.2 Types of Water

        • 3.6.1.3 Sources of Water Pollution

      • 3.6.2 Water Quality and Sustainability

      • 3.6.3 Types of Contaminants

        • 3.6.3.1 Anthropogenic Sources of Organic Chemical Pollutants

        • 3.6.3.2 Marine Debris and Plastic in the Environment

        • 3.6.3.3 Metals and Metalloids

        • 3.6.3.4 Nutrients

        • 3.6.3.5 Radionuclides

        • 3.6.3.6 Bacterial Contamination and Other Water Pathogens

        • 3.6.3.7 Algal Toxins

      • 3.6.4 Case Study of Lead (Pb) in Drinking Water—Flint, MI

      • 3.6.5 Case Study—The St. Clair River and Chemical Valley Sarnia

      • References

  • 3.7

    • 3.7. Contaminants of Emerging Concern, With an Emphasis on Nanomaterials and Pharmaceuticals

      • 3.7.1 Introduction

      • 3.7.2 The Toxicology of Contaminants of Emerging Concerns

      • 3.7.3 Two Contaminants of Emerging Concern Case Studies

        • 3.7.3.1 Case Study #1: Nanomaterials

          • 3.7.3.1.1 Complex Environmental Interactions

          • 3.7.3.1.2 Toxicological Considerations

          • 3.7.3.1.3 Current Status and Future Outlook

          • 3.7.3.1.4 Green Chemistry's Approach to Nanomaterials

        • 3.7.3.2 Case Study #2: Pharmaceuticals

          • 3.7.3.2.1 Predictable Environmental Interactions

          • 3.7.3.2.2 Toxicological Considerations

          • 3.7.3.2.3 Endocrine Disrupting Compounds

          • 3.7.3.2.4 Current Status and Future Outlook

          • 3.7.3.2.5 Green Chemistry's Approach to Pharmaceuticals

      • 3.7.4 Conclusions

      • References

  • 3.8

  • 3.9

    • 3.9. The Composition of Soils and Sediments

      • 3.9.1 Introduction

      • 3.9.2 Origin of Soils and Sediments

      • 3.9.3 Factors Affecting Composition of Soils and Sediments

        • 3.9.3.1 Parent Material

        • 3.9.3.2 Climate

        • 3.9.3.3 Topography

        • 3.9.3.4 Biota

        • 3.9.3.5 Time

      • 3.9.4 Properties of Soils

        • 3.9.4.1 Physical Properties

          • 3.9.4.1.1 Soil Texture

          • 3.9.4.1.2 Soil Color

          • 3.9.4.1.3 Soil Density

        • 3.9.4.2 Chemical Properties

          • 3.9.4.2.1 pH

          • 3.9.4.2.2 Plant Nutrients

          • 3.9.4.2.3 Soil Carbon

          • 3.9.4.2.4 Soil Salinity and Sodicity

        • 3.9.4.3 Biological Properties

          • 3.9.4.3.1 Classification of Organisms According to Size

          • 3.9.4.3.2 Classification According to Genetic Similarities

          • 3.9.4.3.3 Classification According to Ecological Function

      • 3.9.5 Properties of Sediments

        • 3.9.5.1 Physical Properties

        • 3.9.5.2 Chemical Properties

        • 3.9.5.3 Biological Properties

      • 3.9.6 Importance of Soils and Sediments

      • 3.9.7 Conclusions

      • Recommended Reading

  • 3.10

    • 3.10. Heavy Metal Pollution and Remediation

      • 3.10.1 Introduction

        • 3.10.1.1 Arsenic

        • 3.10.1.2 Lead

        • 3.10.1.3 Mercury

        • 3.10.1.4 Cadmium

        • 3.10.1.5 Chromium

      • 3.10.2 Remediation of Heavy Metals

        • 3.10.2.1 Physical Methods

          • 3.10.2.1.1 Soil Replacement

          • 3.10.2.1.2 Soil Washing

          • 3.10.2.1.3 Vitrification

        • 3.10.2.2 Chemical Methods

          • 3.10.2.2.1 Immobilization

          • 3.10.2.2.2 Extraction

        • 3.10.2.3 Biological Remediation

          • 3.10.2.3.1 Phytoremediation

          • 3.10.2.3.2 Limitations of Phytoremediation

      • 3.10.3 Conclusions

      • References

      • Recommended Reading

  • 3.11

    • 3.11. Application of Green Chemistry in Homogeneous Catalysis

      • 3.11.1 Introduction

      • 3.11.2 Metal-Based Catalysis

        • 3.11.2.1 Oxidation Reactions

        • 3.11.2.2 Reduction of CC and CX Double Bonds

        • 3.11.2.3 Cross-Coupling Reactions

        • 3.11.2.4 Cycloisomerization Reactions

      • 3.11.3 Organocatalysis

        • 3.11.3.1 CC Bond Formation Reactions

          • 3.11.3.1.1 Amine-Based Catalysts

          • 3.11.3.1.2 N-Heterocyclic-Carbene-Based Catalysts

          • 3.11.3.1.3 Chiral Phosphoric Acids Catalysts

          • 3.11.3.1.4 Carbohydrate-Based Catalysts

        • 3.11.3.2 Oxidation Reactions

      • 3.11.4 Conclusion

      • References

  • 3.12

    • 3.12. Heterogeneous Catalysis: A Fundamental Pillar of Sustainable Synthesis

      • 3.12.1 Introductory Remarks

      • 3.12.2 Preparation of Catalysts and Their Use in Various Chemical Reactions

        • 3.12.2.1 Metals, Supported Metals, Metal Nanoparticles, Supported Metal Nanoparticles

          • 3.12.2.1.1 New Emerging Supports

        • 3.12.2.2 Oxides, Mixed/Supported Oxides

        • 3.12.2.3 Pristine (Nonfunctionalized) Micro- and Mesoporous Materials

        • 3.12.2.4 Immobilized Hybrid Materials

          • 3.12.2.4.1 Immobilization via Covalent Bonds

          • 3.12.2.4.2 Immobilization via Electrostatic Interactions

          • 3.12.2.4.3 Immobilization via Secondary Bonding Interactions

        • 3.12.2.5 Functionalized Hybrid Materials

        • 3.12.2.6 Miscellaneous Methods and Catalysts

          • 3.12.2.6.1 Auxiliary Methods Making the Heterogeneous Catalytic Reactions Greener

          • 3.12.2.6.2 Ionic Liquids as Catalysts

          • 3.12.2.6.3 Molecular Organic Framework-Based Catalysts

      • 3.12.3 Catalytic Conversion of the Biomass

      • 3.12.4 Selected Recent Reviews Concerning the Advances in Performing Reaction Types in a Green Way and Transforming the Biomass

      • 3.12.5 Conclusions and Outlook

      • References

  • 3.13

    • 3.13. Phase Transfer Catalysis: A Tool for Environmentally Benign Synthesis

      • 3.13.1 Asymmetric Phase Transfer Catalysis

        • 3.13.1.1 Catalysts

        • 3.13.1.2 Asymmetric Alkylation

        • 3.13.1.3 Conjugate Addition

        • 3.13.1.4 Cyclization Reactions

          • 3.13.1.4.1 Epoxidation

          • 3.13.1.4.2 Aziridination and Michael Addition

          • 3.13.1.4.3 Synthesis of Pyrazolidine Derivatives

          • 3.13.1.4.4 Synthesis of Triazolines

          • 3.13.1.4.5 Synthesis of Carbocycles

      • 3.13.2 Polymer-Anchored and Multisite Phase Transfer Catalysts

      • 3.13.3 Nanoparticle-Supported Phase Transfer Catalysts

      • 3.13.4 Conclusions and Outlook

      • References

  • 3.14

    • 3.14. Biocatalysis: Nature's Chemical Toolbox

      • 3.14.1 Introduction

        • 3.14.1.1 Bioengineering of Biocatalysts

        • 3.14.1.2 Hybrid Enzymatic/Synthetic Methods

      • 3.14.2 Benefits and Drawbacks of Biocatalyst Development

      • 3.14.3 Case Studies of Biocatalysts

      • 3.14.4 Case Study 1: Terpenes

        • 3.14.4.1 Introduction

        • 3.14.4.2 Terpenoids

        • 3.14.4.3 Terpenoid Synthases as Biocatalysts for Terpene and Terpenoid Production

        • 3.14.4.4 Production of Bio-Isoprene

        • 3.14.4.5 Chemical and Biocatalytic Synthesis of Menthol and Limonene

        • 3.14.4.6 Bioengineering Yeast to Produce Artemisinic Acid for the Treatment of Malaria

        • 3.14.4.7 Plant Cell Fermentation of the Potent Antitumor Agent Paclitaxel

        • 3.14.4.8 Reprogramming Terpenoid Synthases

      • 3.14.5 Case Study 2: Polyketide and Nonribosomal Peptide Natural Products

        • 3.14.5.1 Introduction

        • 3.14.5.2 Biosynthesis of Polyketide Synthase and Nonribosomal Peptide Synthetase Products

        • 3.14.5.3 6-Deoxyerythronolide B Synthase

        • 3.14.5.4 Yersiniabactin Synthetase

        • 3.14.5.5 Manipulating Polyketide Synthase/Nonribosomal Peptide Synthetase Systems

      • 3.14.6 Case Study 3: Ribozymes as Biocatalysts

        • 3.14.6.1 Diels-Alderases: Ribozymes That Catalyze Diels-Alder Reactions

      • 3.14.7 Benefits and Drawbacks of RNA Catalysts

      • 3.14.8 Conclusions

      • References

  • 3.15

    • 3.15. Organic Solvents in Sustainable Synthesis and Engineering

      • 3.15.1 The Role of Organic Solvents in Chemistry and Chemical Engineering

      • 3.15.2 Rationale for Solvent Selection

        • 3.15.2.1 Solvents as Reaction Media

        • 3.15.2.2 Solvents for Crystallization

        • 3.15.2.3 Solvents for Adsorption

        • 3.15.2.4 Solvents for Extraction and Partitioning

        • 3.15.2.5 Solvents for Membrane Processes

        • 3.15.2.6 Recent Trends

      • 3.15.3 Carbon Footprint of Organic Solvents

      • 3.15.4 Solvents for Sustainable Chemistry

      • 3.15.5 Solvent Recovery and Recycling

        • 3.15.5.1 Distillation Processes

        • 3.15.5.2 Adsorption Processes

        • 3.15.5.3 Membrane Processes

      • 3.15.6 Adverse Impact of Organic Solvents

        • 3.15.6.1 Exposure and Health Effects of Organic Solvents

        • 3.15.6.2 Impact on the Environment

          • 3.15.6.2.1 Organic Solvents in Water and Mitigating Technologies

          • 3.15.6.2.2 Organic Solvents in Air and Mitigating Technologies

          • 3.15.6.2.3 Organic Solvents in Soil and Mitigating Technologies

      • Acknowledgment

      • References

  • 3.16

    • 3.16. Ionic Liquids as Novel Media and Catalysts for Electrophilic/Onium Ion Chemistry and Metal-Mediated Reactions

      • 3.16.1 Introduction

      • 3.16.2 Electrophilic Alkylation and Acylation Reactions

        • 3.16.2.1 Alkylation, Adamantylation, Alkenylation, and Benzylation

        • 3.16.2.2 Acylation in Ionic Liquids

      • 3.16.3 Generation of Tamed Propargylic and Allylic Cations in Ionic Liquids for Facile Propargylation and Allylation

      • 3.16.4 Electrophilic Nitration in Ionic Liquids

      • 3.16.5 Halofunctionalization of Arenes in Ionic Liquids

        • 3.16.5.1 Fluorofunctionalization

        • 3.16.5.2 Chloro-, Bromo-, and Iodofunctionalization

      • 3.16.6 Synthesis of High-Value Small Molecules via Dediazoniative Functionalization in Ionic Liquids

      • 3.16.7 Ionic Liquids as Solvent and Catalyst for the Synthesis of Heterocycles

      • 3.16.8 Ritter Reaction

      • 3.16.9 Schmidt Reaction

      • 3.16.10 Metal-Mediated Cross-Coupling and Cyclization Reactions in Ionic Liquids

        • 3.16.10.1 Heck Cross-Coupling

        • 3.16.10.2 Sonogashira Cross-Coupling

        • 3.16.10.3 Suzuki Cross-Coupling

        • 3.16.10.4 Some Featured Coupling and Cyclization Reactions

        • 3.16.10.5 Hydroformylation of Alkenes

        • 3.16.10.6 Formylation of Amines and Alcohols

      • 3.16.11 Diels-Alder Reaction in Ionic Liquids

      • 3.16.12 Wittig Reaction in Ionic Liquids

      • 3.16.13 Concluding Remarks

      • Acknowledgment

      • References

  • 3.17

    • 3.17. Solvent-Free Synthesis of Nanoparticles

      • 3.17.1 Introduction

      • 3.17.2 Mechanochemistry

        • 3.17.2.1 Ball Milling and Rheomixing

        • 3.17.2.2 Mortar and Pestle Milling

      • 3.17.3 Solvent-Free Synthesis of Nanoparticles Through Thermal Treatment

        • 3.17.3.1 Thermal Decomposition/Thermolysis of Metal Salt Precursor

          • 3.17.3.1.1 Thermal Decomposition of Metal Salt Precursor Nanostructure

            • 3.17.3.1.1.1 Other Synthetic Routes for Preparation of Functionalized Nanoparticles Using Thermal Treatment

          • 3.17.3.1.2 Thermal Decomposition of the Metal Acetate Precursor Nanostructures With Capping Agents

        • 3.17.3.2 Solvent-Free Synthesis by Heating via Microwave Energy

      • 3.17.4 Conclusions

      • References

  • 3.18

    • 3.18. Application of Microwaves in Sustainable Organic Synthesis

      • 3.18.1 Introduction

      • 3.18.2 Multicomponent Reactions

      • 3.18.3 Cyclization/Cycloaddition Reactions

      • 3.18.4 Radical Cyclizations

      • 3.18.5 Reactions by Solid Catalysts

      • 3.18.6 Metathesis

      • 3.18.7 Solid-Phase Synthesis on Polymer Supports

      • 3.18.8 Combination of Ionic Liquids and Microwave Irradiation

      • 3.18.9 Microwave Heating Effect

      • 3.18.10 Conclusions and Future Outlook

      • References

  • 3.19

    • 3.19. Application of Sonochemical Activation in Green Synthesis

      • 3.19.1 Organic Synthesis

      • 3.19.2 Synthesis of Nanoparticles and Nanostructures

      • 3.19.3 Conclusion

      • References

  • 3.20

    • 3.20. Principles of Electrocatalysis

      • 3.20.1 Fundamentals of Cyclic Voltammetry

      • 3.20.2 Electrocatalysis

        • 3.20.2.1 Overpotential

        • 3.20.2.2 Proton-Coupled Electron Transfer

        • 3.20.2.3 Rate Analysis of a Homogeneous Electrocatalyst

        • 3.20.2.4 Foot-of-the-Wave Analysis

      • 3.20.3 A Case Study in Homogeneous Electrocatalytic CO2 Reduction

      • 3.20.4 Highlights in Homogeneous Electrocatalytic CO2 Reduction by First-Row Transition Metals

        • 3.20.4.1 Cyclam and Pincer Complexes

        • 3.20.4.2 Polypyridyl Complexes

        • 3.20.4.3 Iron Porphyrin Catalysts

      • 3.20.5 Conclusions

      • References

  • 3.21

    • 3.21. Principles of Photochemical Activation Toward Artificial Photosynthesis and Organic Transformations

      • 3.21.1 Introduction

      • 3.21.2 Solar Energy Distribution

      • 3.21.3 The Jablonski Diagram

      • 3.21.4 Principles of Photochemical Activation

      • 3.21.5 Evaluating the Efficiency of a Photocatalytic System

      • 3.21.6 Examples of Photocatalytic Systems

        • 3.21.6.1 Principles of Artificial Photosynthesis: Photocatalytic CO2 Reduction and H2O Oxidation

        • 3.21.6.2 Photocatalysis in Organic Synthesis

      • References

  • 3.22

    • 3.22. Biopolymers: Biodegradable Alternatives to Traditional Plastics

      • 3.22.1 Introduction

      • 3.22.2 Protein: A Ubiquitous Biopolymer

        • 3.22.2.1 Collagen and Gelatin

        • 3.22.2.2 Silk

      • 3.22.3 Polysaccharides

        • 3.22.3.1 Starch

        • 3.22.3.2 Cellulose

        • 3.22.3.3 Chitin/Chitosan

      • 3.22.4 Polyhydroxyalkanoate—A Natural and Diverse Polyester

      • 3.22.5 Conclusion and Outlook

      • References

  • 3.23

    • 3.23. Modern Applications of Green Chemistry: Renewable Energy

      • 3.23.1 The Static Concentration of Energy in Chemical Bonds and the Physical Double Layer: Modern Methods of Energy Storage

        • Outline placeholder

          • 3.23.1.1 Introduction

          • 3.23.1.2 Heat Engine

          • 3.23.1.3 Energy and Electron Transfer or “Cold Combustion”

          • 3.23.1.4 Electrochemical Energy Storage

            • 3.23.1.4.1 Fundamentals

            • 3.23.1.4.2 Ideal vs. Real Behavior: Energy Losses

          • 3.23.1.5 Electrochemical Energy Devices

            • 3.23.1.5.1 Batteries

            • 3.23.1.5.2 Fuel Cells

            • 3.23.1.5.3 Electrochemical Capacitors

      • 3.23.2 The Movement of Electrons in Batteries, Fuel Cells, and Supercapacitors: Methods of Energy Delivery

        • Outline placeholder

          • 3.23.2.1 Introduction

          • 3.23.2.2 Batteries

            • 3.23.2.2.1 Battery Types

              • 3.23.2.2.1.1 Alkaline Battery

              • 3.23.2.2.1.2 Lead Acid Battery

              • 3.23.2.2.1.3 Ni Metal Hydride Battery

              • 3.23.2.2.1.4 Lithium Ion Battery

            • 3.23.2.2.2 Challenges

            • 3.23.2.2.3 Current Research

          • 3.23.2.3 Fuel Cells

            • 3.23.2.3.1 Fuel Cell Types

              • 3.23.2.3.1.1 Alkaline Fuel Cell

              • 3.23.2.3.1.2 Proton Exchange Membrane Fuel Cell

              • 3.23.2.3.1.3 Direct Methanol Fuel Cell

              • 3.23.2.3.1.4 Phosphoric Acid Fuel Cell

              • 3.23.2.3.1.5 Molten Carbonate Fuel Cell

              • 3.23.2.3.1.6 Solid Oxide Fuel Cell

            • 3.23.2.3.2 Current Research

          • 3.23.2.4 Supercapacitors

            • 3.23.2.4.1 Electrolytes and Electrodes

            • 3.23.2.4.2 Classifying Supercapacitors

            • 3.23.2.4.3 Challenges

            • 3.23.2.4.4 Current and Future Research

              • 3.23.2.4.4.1 Electrode Materials

              • 3.23.2.4.4.2 Hybrid Electrochemical Capacitors

          • References

      • 3.23.3 Applications of Renewable Energy From Green Chemistry: Electric Vehicles, Smart Grids, Smart Roadways, and Smart Bui ...

        • Outline placeholder

          • 3.23.3.1 Introduction

          • 3.23.3.2 The History of Electric Vehicles

            • 3.23.3.2.1 Electric Vehicle Power Train Configurations

            • 3.23.3.2.2 Advancements in Electric Vehicle Batteries

          • 3.23.3.3 Smart Grids

          • 3.23.3.4 Smart Roadways

          • 3.23.3.5 Smart Buildings (Green Buildings and Homes)

          • 3.23.3.6 Home and Community Solar Harvesting and Energy Storage Systems

          • References

      • 3.23.4 Innovations and Future Opportunities for Renewable Energy From Green Chemistry

        • Outline placeholder

          • 3.23.4.1 Introduction

          • 3.23.4.2 Future Electric Vehicle Batteries: The Hybridization of Battery and Supercapacitor Technology

          • 3.23.4.3 Future Smart Grid and Smart Road Opportunities

          • 3.23.4.4 Future Smart Building and Smart Home Opportunities

          • 3.23.4.5 Final Words

          • References

  • 3.24

    • 3.24. From Ethanol to Biodiesel: A Survey of Green Fuels

      • 3.24.1 Introduction

      • 3.24.2 Bioethanol Production

      • 3.24.3 Higher Alcohols

        • 3.24.3.1 n-Butanol

        • 3.24.3.2 Isobutanol

      • 3.24.4 Biodiesel: Lipid-Derived Biofuel

      • 3.24.5 Conclusion and Future Prospects

      • References

  • 3.25

    • 3.25. Solar Energy Conversion

      • 3.25.1 Solar Energy and Dye-Sensitized Solar Cells

      • 3.25.2 Dye-Sensitized Solar Cell Design, Mechanism, and Thermodynamic Considerations

      • 3.25.3 Optimization of Dye-Sensitized Solar Cell Design

        • 3.25.3.1 Mesoporous Metal Oxide Working Electrode

        • 3.25.3.2 Counter Electrode

      • 3.25.4 Dye Sensitizers and Anchoring Groups

        • 3.25.4.1 Metal Coordination Complexes

        • 3.25.4.2 Organic Dyes

        • 3.25.4.3 Surface-Anchoring Groups

        • 3.25.4.4 Redox Mediators and Supporting Electrolyte Formulations

          • 3.25.4.4.1 Triiodide/Iodide

          • 3.25.4.4.2 Tribromide/bromide

          • 3.25.4.4.3 Organic Redox Mediators

          • 3.25.4.4.4 Transition Metal Complex Mediators

      • 3.25.5 Perovskites: Emerging Solar Cell Photosensitizers

        • 3.25.5.1 Perovskite Solar Cells

      • References

      • Recommended Reading

  • 3.26

    • 3.26. Toward a Sustainable Carbon Cycle: The Methanol Economy

      • 3.26.1 Introduction

      • 3.26.2 Why Methanol?

      • 3.26.3 Methanol Production From Fossil Fuels With Reduced or No CO2 Emission

        • 3.26.3.1 Steam Reforming of Methane

        • 3.26.3.2 Partial Oxidation of Methane

        • 3.26.3.3 Dry Reforming of Methane

        • 3.26.3.4 Bi-reforming of Methane (Natural Gas) for Methanol Production

        • 3.26.3.5 Addition of CO2 to Syngas From Methane Steam Reforming

        • 3.26.3.6 Production of H2 From CH4 Without CO2 Formation and the Carnol Process

        • 3.26.3.7 Coal to Methanol Without CO2 Emissions

      • 3.26.4 Sustainable Production of Methanol

        • 3.26.4.1 Biomass- and Waste-Based Methanol and Dimethyl Ether: Bio-methanol and Bio-Dimethyl Ether

          • 3.26.4.1.1 Limitations of Biomass

        • 3.26.4.2 Methanol Through CO2 Recycling

          • 3.26.4.2.1 Methanol From CO2 and H2

            • 3.26.4.2.1.1 Heterogeneous Catalysts for the Production of Methanol From CO2 and H2

            • 3.26.4.2.1.2 Reduction of CO2 to Methanol With Homogeneous Catalysts

            • 3.26.4.2.1.3 Two-Step Route for CO2 Hydrogenation to Methanol

          • 3.26.4.2.2 CO2 Reduction to CO Followed by Hydrogenation

          • 3.26.4.2.3 Electrochemical Routes From CO2 to Methanol

            • 3.26.4.2.3.1 Direct Electrochemical CO2 Reduction to Methanol

            • 3.26.4.2.3.2 Methods for High Rate Electrochemical CO2 Reduction

          • 3.26.4.2.4 Photochemical Reduction of CO2 to Methanol

          • 3.26.4.2.5 Practical Applications of CO2 to Methanol

        • 3.26.4.3 Production of Dimethyl Ether From CO2

      • 3.26.5 Where Should the CO2 Come From?

        • 3.26.5.1 Capture of CO2 From Any Source

        • 3.26.5.2 CO2 From Biomass and the Atmosphere

      • 3.26.6 The Path Toward an Anthropogenic Carbon Cycle

      • References

  • 3.27

    • 3.27. Natural and Nature-Inspired Synthetic Small Molecule Antioxidants in the Context of Green Chemistry

      • 3.27.1 Introduction

      • 3.27.2 Identification, Isolation, and Structural Characterization

      • 3.27.3 Limitations of Therapeutic Applications

      • 3.27.4 Chemical Modifications and Formulations to Improve Druglike Properties and Therapeutic Potential

      • 3.27.5 Conclusions

      • References

  • 3.28

    • 3.28. The Value-Adding Connections Between the Management of Ecoinnovation and the Principles of Green Chemistry and Green Engine ...

      • 3.28.1 Introduction

        • 3.28.1.1 Importance of Sustainability to Business and the Connections to the Principles of Green Chemistry and Green Engineering

          • 3.28.1.1.1 Connections Between Sustainability, Value Creation Levers, and the Principles of Green Chemistry and Green Engineering

          • 3.28.1.1.2 Connections Between Sustainability Literacy and the Principles of Green Chemistry and Green Engineering

        • 3.28.1.2 What Are Principles of Green Chemistry and Green Engineering in the Context of Business Sustainability?

        • 3.28.1.3 What Do the Principles Offer to Managers, Leaders, and Their Companies?

      • 3.28.2 Discussion

        • 3.28.2.1 What Is Ecoinnovation? What Is the Relevance of Green Chemistry and Green Engineering Principles to Ecoinnovation?

        • 3.28.2.2 Who Are the Actors Involved in the Management of Ecoinnovation, and Who Can Implement or Use the Principles of Green Chemis ...

        • 3.28.2.3 Management of Ecoinnovation and the Value-Adding Connections to the Principles of Green Chemistry and Green Engineering

          • 3.28.2.3.1 Overview

          • 3.28.2.3.2 Framework of the Innovation Management Process: Opportunities to Apply the Principles

      • 3.28.3 Conclusions and Summary

        • Funding Sources

      • References

  • 3.29

    • 3.29. The International Chemicals Regime: Protecting Health and the Environment

      • 3.29.1 The International Regime for Regulation of Chemicals and Hazardous Waste

        • 3.29.1.1 Chemicals and Hazardous Waste Regulation

        • 3.29.1.2 Persistent Organic Pollutants

        • 3.29.1.3 Mercury

        • 3.29.1.4 Institutional Framework

          • 3.29.1.4.1 Secretariats

          • 3.29.1.4.2 Conference of the Parties

          • 3.29.1.4.3 Strategic Approach to International Chemicals Management

        • 3.29.1.5 Scientific Input to the Chemicals and Waste Conventions

      • 3.29.2 Implementing the Basel and Stockholm Conventions

      • 3.29.3 International Chemicals and Waste Regulation at the National Level: Country Case Studies

        • 3.29.3.1 Canada: Using the Input of the Scientific Community and Other Stakeholders

        • 3.29.3.2 European Union: Regional Approaches to Chemicals Management and Safety

        • 3.29.3.3 Colombia: Calling for Additional Knowledge and Technical Capacity

        • 3.29.3.4 United States: Nonparties and Their Domestic Regulation on Chemicals and Waste

        • 3.29.3.5 Brazil: Legislation and Interagency Partnerships for Implementation

      • 3.29.4 Sustainable Development Goals: Future for Chemicals and Waste Regulation?

      • References

  • 3.295

    • Index

      • A

      • B

      • C

      • D

      • E

      • F

      • G

      • H

      • I

      • J

      • K

      • L

      • M

      • N

      • O

      • P

      • Q

      • R

      • S

      • T

      • U

      • V

      • W

      • Y

      • Z

Nội dung

Ngày đăng: 17/05/2022, 12:32

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN