1. Trang chủ
  2. » Khoa Học Tự Nhiên

Advanced nanomaterials

958 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Advanced Nanomaterials

    • Contents

    • Preface

    • List of Contributors

    • Volume 1

      • 1: Phase-Selective Chemistry in Block Copolymer Systems

        • 1.1 Block Copolymers as Useful Nanomaterials

          • 1.1.1 Introduction

          • 1.1.2 Self-Assembly of Block Copolymers

          • 1.1.3 Triblock Copolymers

          • 1.1.4 Rod–Coil Block Copolymers

          • 1.1.5 Micelle Formation

          • 1.1.6 Synthesis of Block Copolymers Using Living Polymerization Techniques

            • 1.1.6.1 Anionic Polymerization

            • 1.1.6.2 Stable Free Radical Polymerizations

            • 1.1.6.3 Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization

            • 1.1.6.4 Atom Transfer Radical Polymerization

            • 1.1.6.5 Ring-Opening Metathesis Polymerization

            • 1.1.6.6 Group Transfer Polymerization

          • 1.1.7 Post-Polymerization Modifications

            • 1.1.7.1 Active-Center Transformations

            • 1.1.7.2 Polymer-Analogous Reactions

        • 1.2 Block Copolymers as Lithographic Materials

          • 1.2.1 Introduction to Lithography

          • 1.2.2 Block Copolymers as Nanolithographic Templates

            • 1.2.2.1 Creation of Nanoporous Block Copolymer Templates

          • 1.2.3 Multilevel Resist Strategies Using Block Copolymers

        • 1.3 Nanoporous Monoliths Using Block Copolymers

          • 1.3.1 Structure Direction Using Block Copolymer Scaffolds

          • 1.3.2 Nanopore Size Tunability

          • 1.3.3 Functionalized Nanoporous Surfaces

        • 1.4 Photo-Crosslinkable Nano-Objects

        • 1.5 Block Copolymers as Nanoreactors

          • 1.5.1 Polymer–Metal Solubility

          • 1.5.2 Cluster Nucleation and Growth

          • 1.5.3 Block Copolymer Micelle Nanolithography

        • 1.6 Interface-Active Block Copolymers

          • 1.6.1 Low-Energy Surfaces Using Fluorinated Block Copolymers

          • 1.6.2 Patterning Surface Energies

          • 1.6.3 Photoswitchable Surface Energies Using Block Copolymers Containing Azobenzene

          • 1.6.4 Light-Active Azobenzene Block Copolymer Vesicles as Drug Delivery Devices

          • 1.6.5 Azobenzene - Containing Block Copolymers as Holographic Materials

        • 1.7 Summary and Outlook

        • References

      • 2: Block Copolymer Nanofibers and Nanotubes

        • 2.1 Introduction

        • 2.2 Preparation

          • 2.2.1 Nanofiber Preparation

          • 2.2.2 Nanotube Preparation

        • 2.3 Solution Properties

        • 2.4 Chemical Reactions

          • 2.4.1 Backbone Modification

          • 2.4.2 End Functionalization

        • 2.5 Concluding Remarks

        • Acknowledgements

        • References

      • 3: Smart Nanoassemblies of Block Copolymers for Drug and Gene Delivery

        • 3.1 Introduction

        • 3.2 Smart Nanoassemblies for Drug and Gene Delivery

        • 3.3 Endogenous Triggers

          • 3.3.1 pH-Sensitive Nanoassemblies

            • 3.3.1.1 Drug Delivery

            • 3.3.1.2 Gene Delivery

          • 3.3.2 Oxidation- and Reduction-Sensitive Polymeric Nanoassemblies

          • 3.3.3 Other Endogenous Triggers

        • 3.4 External Stimuli

          • 3.4.1 Temperature

          • 3.4.2 Light

          • 3.4.3 Ultrasound

        • 3.5 Future Perspectives

        • References

      • 4: A Comprehensive Approach to the Alignment and Ordering of Block Copolymer Morphologies

        • 4.1 Introduction

          • 4.1.1 Motivation

          • 4.1.2 Organization of the Chapter

        • 4.2 How to Help Phase Separation

        • 4.3 Orientation by External Fields

          • 4.3.1 Mechanical Flow Fields

          • 4.3.2 Electric and Magnetic Fields

          • 4.3.3 Solvent Evaporation and Thermal Gradient

        • 4.4 Templated Self-Assembly on Nanopatterned Surfaces

        • 4.5 Epitaxy and Surface Interactions

          • 4.5.1 Preferential Wetting and Homogeneous Surface Interactions

          • 4.5.2 Epitaxy

          • 4.5.3 Directional Crystallization

          • 4.5.4 Graphoepitaxy and Other Confining Geometries

          • 4.5.5 Combination of Directional Crystallization and Graphoepitaxy

          • 4.5.6 Combination of Epitaxy and Directional Crystallization

        • 4.6 Summary and Outlook

        • Acknowledgments

        • References

      • 5: Helical Polymer-Based Supramolecular Films

        • 5.1 Introduction

        • 5.2 Helical Polymer-Based 1-D and 2-D Architectures

          • 5.2.1 Formation of Various 1-D Architectures of Helical Polysilanes on Surfaces

            • 5.2.1.1 Direct Visualization of 1-D Rod, Semi-Circle and Circle Structures by AFM

            • 5.2.1.2 Driving Force for the Formation of 1-D Architectures

          • 5.2.2 Formation of Mesoscopic 2-D Hierarchical Superhelical Assemblies

            • 5.2.2.1 Direct Visualization of a Single Polymer Chain

            • 5.2.2.2 Formation of Superhelical Assemblies by Homochiral Intermolecular Interactions

          • 5.2.3 Formation of 2-D Crystallization of Poly(b-L-Glutamates) on Surfaces

            • 5.2.3.1 Direct Visualization of 2-D Self-Organized Array by AFM

            • 5.2.3.2 Orientation in 2-D Self-Organized Array

            • 5.2.3.3 Intermolecular Weak van der Waals Interactions in 2-D Self-Organized Arrays

            • 5.2.3.4 Comparison of Structures between a 2-D Self-Organized Array and 3-D Bulk Phase

          • 5.2.4 Summary of Helical Polymer-Based 1-D and 2-D Architectures

        • 5.3 Helical Polymer-Based Functional Films

          • 5.3.1 Chiroptical Memory and Switch in Helical Polysilane Films

            • 5.3.1.1 Memory with Re-Writable Mode and Inversion “-1” and “+1” Switch

            • 5.3.1.2 Memory with Write-Once Read-Many (WORM) Mode

            • 5.3.1.3 On-Off “0” and “+1” Switch Based on Helix–Coil Transition

          • 5.3.2 Chiroptical Transfer and Amplification in Binary Helical Polysilane Films

          • 5.3.3 Summary of Helical Polymer-Based Functional Films

        • Acknowledgments

        • References

      • 6: Synthesis of Inorganic Nanotubes

        • 6.1 Introduction

        • 6.2 General Synthetic Strategies

        • 6.3 Nanotubes of Metals and other Elemental Materials

        • 6.4 Metal Chalcogenide Nanotubes

        • 6.5 Metal Oxide Nanotubes

          • 6.5.1 SiO2 Nanotubes

          • 6.5.2 TiO2 Nanotubes

          • 6.5.3 ZnO, CdO, and Al2O3 Nanotubes

          • 6.5.4 Nanotubes of Vanadium and Niobium Oxides

          • 6.5.5 Nanotubes of other Transition Metal Oxides

          • 6.5.6 Nanotubes of other Binary Oxides

          • 6.5.7 Nanotubes of Titanates and other Complex Oxides

        • 6.6 Pnictide Nanotubes

        • 6.7 Nanotubes of Carbides and other Materials

        • 6.8 Complex Inorganic Nanostructures Based on Nanotubes

        • 6.9 Outlook

        • References

      • 7: Gold Nanoparticles and Carbon Nanotubes: Precursors for Novel Composite Materials

        • 7.1 Introduction

        • 7.2 Gold Nanoparticles

        • 7.3 Carbon Nanotubes

        • 7.4 CNT–Metal Nanoparticle Composites

        • 7.5 CNT–AuNP Composites

          • 7.5.1 Filling of CNT s with AuNPs

          • 7.5.2 Deposition of AuNPs Directly on the CNT Surface

          • 7.5.3 Interaction Between Modified AuNPs and CNTs

            • 7.5.3.1 Covalent Linkage

            • 7.5.3.2 Supramolecular Interaction Between AuNPs and CNTs

        • 7.6 Applications

        • 7.7 Merits and Demerits of Synthetic Approaches

        • 7.8 Conclusions

        • Acknowledgments

        • References

      • 8: Recent Advances in Metal Nanoparticle-Attached Electrodes

        • 8.1 Introduction

        • 8.2 Seed-Mediated Growth Method for the Attachment and Growth of AuNPs on ITO

        • 8.3 Electrochemical Applications of AuNP-Attached ITO

        • 8.4 Improved Methods for Attachment and Growth of AuNPs on ITO

        • 8.5 Attachment and Growth of AuNPs on Other Substrates

        • 8.6 Attachment and Growth of Au Nanoplates on ITO

        • 8.7 Attachment and Growth of Silver Nanoparticles (AgNPs) on ITO

        • 8.8 Attachment and Growth of Palladium Nanoparticles PdNPs on ITO

        • 8.9 Attachment of Platinum Nanoparticles PtNPs on ITO and GC

        • 8.10 Electrochemical Measurements of Biomolecules Using AuNP/ ITO Electrodes

        • 8.11 Nonlinear Optical Properties of Metal NP-Attached ITO

        • 8.12 Concluding Remarks

        • References

      • 9: Mesoscale Radical Polymers: Bottom-Up Fabrication of Electrodes in Organic Polymer Batteries

        • 9.1 Mesostructured Materials for Energy Storage Devices

        • 9.2 Mesoscale Fabrication of Inorganic Electrode-Active Materials

        • 9.3 Bottom-Up Strategy for Organic Electrode Fabrication

          • 9.3.1 Conjugated Polymers for Electrode-Active Materials

          • 9.3.2 Mesoscale Organic Radical Polymer Electrodes

        • 9.4 Conclusions

        • References

      • 10: Oxidation Catalysis by Nanoscale Gold, Silver, and Copper

        • 10.1 Introduction

        • 10.2 Preparations

          • 10.2.1 Silver Nanocatalysts

          • 10.2.2 Copper Nanocatalysts

          • 10.2.3 Gold Nanocatalysts

        • 10.3 Selective Oxidation of Carbon Monoxide (CO)

          • 10.3.1 Gold Catalysts

          • 10.3.2 Silver Catalysts

          • 10.3.3 Gold–Silver Alloy Catalysts

          • 10.3.4 Copper Catalysts

        • 10.4 Epoxidation Reactions

          • 10.4.1 Gold Catalysts

          • 10.4.2 Silver Catalysts

        • 10.5 Selective Oxidation of Hydrocarbons

          • 10.5.1 Gold Catalysts

          • 10.5.2 Silver Catalysts

          • 10.5.3 Copper Catalysts

        • 10.6 Oxidation of Alcohols and Aldehydes

          • 10.6.1 Gold Catalysts

          • 10.6.2 Silver Catalysts

        • 10.7 Direct Synthesis of Hydrogen Peroxide

        • 10.8 Conclusions

        • References

      • 11: Self-Assembling Nanoclusters Based on Tetrahalometallate Anions: Electronic and Mechanical Behavior

        • 11.1 Introduction

        • 11.2 Preparation of Key Compounds

        • 11.3 Structure of the [(A(18C6))4(MX 4)] [BX4] 2 · nH2O Complexes

        • 11.4 Structure of the [(Na(15C5))4Br] [TlBr4]3 Complex

        • 11.5 Spectroscopy of the Cubic F 23 [(A(18C6))4 (MX4)] [BX4]2 · nH2O

        • 11.6 Unusual Luminescence Spectroscopy of Some Cubic [(A(18C6))4 (MnX4)] [TlCl4]2 · nH2O Compounds

        • 11.7 Luminescence Decay Dynamics and 18C6 Rotations

        • 11.8 Conclusions

        • Acknowledgments

        • References

      • 12: Optically Responsive Polymer Nanocomposites Containing Organic Functional Chromophores and Metal Nanostructures

        • 12.1 Introduction

        • 12.2 Organic Chromophores as the Dispersed Phase

          • 12.2.1 Nature of the Organic Dye

          • 12.2.2 Polymeric Indicators to Mechanical Stress

            • 12.2.2.1 Oligo(p-Phenylene Vinylene) as Luminescent Dyes

            • 12.2.2.2 Bis(Benzoxazolyl) Stilbene as a Luminescent Dye

            • 12.2.2.3 Perylene Derivatives as Luminescent Dyes

          • 12.2.3 Polymeric Indicators to Thermal Stress

            • 12.2.3.1 Oligo(p-Phenylene Vinylene) as Luminescent Dyes

            • 12.2.3.2 Bis(Benzoxazolyl) Stilbene as Luminescent Dye

            • 12.2.3.3 Anthracene Triaryl Amine-Terminated Diimide as Luminescent Dye

        • 12.3 Metal Nanostructures as the Dispersed Phase

          • 12.3.1 Optical Properties of Metal Nanoassemblies

          • 12.3.2 Nanocomposite-Based Indicators to Mechanical Stress

            • 12.3.2.1 The Use of Metal Nanoparticles

            • 12.3.2.2 The Use of Metal Nanorods

        • 12.4 Conclusions

        • Acknowledgments

        • References

      • 13: Nanocomposites Based on Phyllosilicates: From Petrochemicals to Renewable Thermoplastic Matrices

        • 13.1 Introduction

          • 13.1.1 Structure of Phyllosilicates

            • 13.1.1.1 Clays

          • 13.1.2 Morphology of Composites

          • 13.1.3 Properties of Composites

        • 13.2 Polyolefin-Based Nanocomposites

          • 13.2.1 Overview of the Preparation Methods

          • 13.2.2 Organophilic Clay and Compatibilizer: Interactions with the Polyolefin Matrix

          • 13.2.3 The One-Step Process

        • 13.3 Poly(Ethylene Terephthalate)-Based Nanocomposites

          • 13.3.1 In Situ Polymerization

          • 13.3.2 Intercalation in Solution

          • 13.3.3 Intercalation in the Melt

        • 13.4 Poly(Lactide) (PLA)-Based Nanocomposites

          • 13.4.1 Overview of Preparation Methods

            • 13.4.1.1 In Situ Polymerization

            • 13.4.1.2 Intercalation in Solution

            • 13.4.1.3 Intercalation in the Melt

        • 13.5 Conclusions

        • Acknowledgments

        • References

    • Volume 2

      • 14: Amphiphilic Poly(Oxyalkylene)-Amines Interacting with Layered Clays: Intercalation, Exfoliation, and New Applications

        • 14.1 Introduction

        • 14.2 Chemical Structures of Clays and Organic-Salt Modifications

          • 14.2.1 Natural Clays and Synthetic Layered-Double-Hydroxide (LDH)

          • 14.2.2 Low-Molecular-Weight Intercalating Agents and X-Ray Diffraction d-Spacing

        • 14.3 Poly(Oxyalkylene)-Polyamine Salts as Intercalating Agents, and Their Reaction Profiles

          • 14.3.1 Poly(Oxyalkylene)-Polyamine Salts as Intercalating Agents

          • 14.3.2 Critical Conformational Change in Confinement During the Intercalating Profile

          • 14.3.3 Correlation between MMT d-Spacing and Intercalated Organics

        • 14.4 Amphiphilic Copolymers as Intercalating Agents

          • 14.4.1 Various Structures of the Amphiphilic Copolymers

          • 14.4.2 Colloidal Properties

        • 14.5 New Intercalation Mechanism Other than the Ionic-Exchange Reaction

          • 14.5.1 Amidoacid and Carboxylic Acid Chelating

          • 14.5.2 Intercalation Involving Intermolecular Hydrogen Bonding

        • 14.6 Self-Assembling Properties of Organoclays

        • 14.7 Exfoliation Mechanism and the Isolation of Random Silicate Platelets

          • 14.7.1 Thermodynamically Favored Exfoliation of Na+-MMT by the PP-POP Copolymers

          • 14.7.2 Zigzag Mechanism for Exfoliating Na+-MMT

        • 14.8 Isolation of the Randomized Silicate Platelets in Water

        • 14.9 Emerging Applications in Biomedical Research

        • 14.10 Conclusions

        • References

      • 15: Mesoporous Alumina: Synthesis, Characterization, and Catalysis

        • 15.1 Introduction

        • 15.2 Synthesis of Mesoporous Alumina

          • 15.2.1 Experimental Techniques

            • 15.2.1.1 Synthesis

            • 15.2.1.2 Characterization

          • 15.2.2 Examples of Synthesis

            • 15.2.2.1 Neutral Surfactant Templating

            • 15.2.2.2 Anionic Surfactant Templating

            • 15.2.2.3 Cationic Surfactant Templating

            • 15.2.2.4 Nonsurfactant Templating

        • 15.3 Mesoporous Alumina in Heterogeneous Catalysis

          • 15.3.1 Base-Catalyzed Reactions

          • 15.3.2 Epoxidation

          • 15.3.3 Hydrodechlorination

          • 15.3.4 Hydrodesulfurization

          • 15.3.5 Olefin Metathesis

          • 15.3.6 Oxidative Dehydrogenation

          • 15.3.7 Oxidative Methanol Steam Reforming

        • 15.4 Conclusions and Outlook

        • References

      • 16: Nanoceramics for Medical Applications

        • 16.1 Introduction

        • 16.2 Tissue Engineering and Regeneration

          • 16.2.1 Scaffolds

          • 16.2.2 Liposomes

        • 16.3 Nanohydroxyapatite Powders for Medical Applications

        • 16.4 Nanocoatings and Surface Modifications

          • 16.4.1 Calcium Phosphate Coatings

          • 16.4.2 Sol–Gel Nanohydroxyapatite and Nanocoated Coralline Apatite

          • 16.4.3 Surface Modifications

        • 16.5 Simulated Body Fluids

        • 16.6 Nano- and Macrobioceramics for Drug Delivery and Radiotherapy

          • 16.6.1 Nanobioceramics for Drug Delivery

          • 16.6.2 Microbioceramics for Drug Delivery

          • 16.6.3 Microbioceramics for Radiotherapy

        • 16.7 Nanotoxicology and Nanodiagnostics

        • References

      • 17: Self-healing of Surface Cracks in Structural Ceramics

        • 17.1 Introduction

        • 17.2 Fracture Manner of Ceramics

        • 17.3 History

        • 17.4 Mechanism

        • 17.5 Composition and Structure

          • 17.5.1 Composition

          • 17.5.2 SiC Figuration

          • 17.5.3 Matrix

        • 17.6 Valid Conditions

          • 17.6.1 Atmosphere

          • 17.6.2 Temperature

          • 17.6.3 Stress

        • 17.7 Crack-healing Effect

          • 17.7.1 Crack-healing Effects on Fracture Probability

          • 17.7.2 Fatigue Strength

          • 17.7.3 Crack-healing Effects on Machining Efficiency

        • 17.8 New Structural Integrity Method

          • 17.8.1 Outline

          • 17.8.2 Theory

          • 17.8.3 Temperature Dependence of the Minimum Fracture Stress Guaranteed

        • 17.9 Advanced Self-crack Healing Ceramics

          • 17.9.1 Multicomposite

          • 17.9.2 SiC Nanoparticle Composites

        • 17.10 Availability to Structural Components of the High Temperature Gas Turbine

        • References

      • 18: Ecological Toxicology of Engineered Carbon Nanoparticles

        • 18.1 Introduction

        • 18.2 Fate and Exposure

          • 18.2.1 General

          • 18.2.2 Stability in Aquatic Systems

          • 18.2.3 Bioavailability and Uptake

          • 18.2.4 Tissue Distribution

          • 18.2.5 Food Web

          • 18.2.6 Effects on the Uptake of Other Contaminants

        • 18.3 Effects

          • 18.3.1 General

          • 18.3.2 Oxidative Stress and Nanoparticles

          • 18.3.3 Effects on Specific Tissues

            • 18.3.3.1 Brain

            • 18.3.3.2 Gills

            • 18.3.3.3 Liver

            • 18.3.3.4 Gut

          • 18.3.4 Developmental Effects

        • 18.4 Summary

        • References

      • 19: Carbon Nanotubes as Adsorbents for the Removal of Surface Water Contaminants

        • 19.1 Introduction

        • 19.2 Structure and Synthesis of Carbon Nanotubes

        • 19.3 Properties of Carbon Nanotubes

          • 19.3.1 Mechanical, Thermal, Electrical, and Optical Properties of Carbon Nanotubes

          • 19.3.2 Adsorption-Related Properties of Carbon Nanotubes

        • 19.4 Carbon Nanotubes as Adsorbents

          • 19.4.1 Adsorption of Heavy Metal Ions

            • 19.4.1.1 Adsorption of Lead (II)

            • 19.4.1.2 Adsorption of Chromium (VI)

            • 19.4.1.3 Adsorption of Cadmium (II)

            • 19.4.1.4 Adsorption of Copper (II)

            • 19.4.1.5 Adsorption of Zinc (II)

            • 19.4.1.6 Adsorption of Nickel (II)

            • 19.4.1.7 Competitive Adsorption of Heavy Metals Ions

          • 19.4.2 Adsorption of Other Inorganic Elements

            • 19.4.2.1 Adsorption of Fluoride

            • 19.4.2.2 Adsorption of Arsenic

            • 19.4.2.3 Adsorption of Americium-243 (III)

          • 19.4.3 Adsorption of Organic Compounds

            • 19.4.3.1 Adsorption of Dioxins

            • 19.4.3.2 Adsorption of 1,2-Dichlorobenzene

            • 19.4.3.3 Adsorption of Trihalomethanes

            • 19.4.3.4 Adsorption of Polyaromatic Compounds

        • 19.5 Summary of the Results, and Conclusions

        • References

      • 20: Molecular Imprinting with Nanomaterials

        • 20.1 Introduction

          • 20.1.1 Molecular Imprinting: The Concept

            • 20.1.1.1 History of Molecular Imprinting

            • 20.1.1.2 Covalent Imprinting

            • 20.1.1.3 Noncovalent Imprinting

            • 20.1.1.4 Alternative Molecular Imprinting Approaches

          • 20.1.2 Towards Imprinting with Nanomaterials

        • 20.2 Molecular Imprinting in Nanoparticles

          • 20.2.1 Emulsion Polymerization

            • 20.2.1.1 Core–Shell Emulsion Polymerization

            • 20.2.1.2 Mini-Emulsion Polymerization

          • 20.2.2 Precipitation Polymerization

            • 20.2.2.1 Applications and Variations

            • 20.2.2.2 Microgel/Nanogel Polymerization

          • 20.2.3 Silica Nanoparticles

          • 20.2.4 Molecularly Imprinted Nanoparticles: Miscellaneous

        • 20.3 Molecular Imprinting with Diverse Nanomaterials

          • 20.3.1 Nanowires, Nanotubes, and Nanofibers

          • 20.3.2 Quantum Dots

          • 20.3.3 Fullerene

          • 20.3.4 Dendrimers

        • 20.4 Conclusions and Future Prospects

        • References

      • 21: Near-Field R aman Imaging of Nanostructures and Devices

        • 21.1 Introduction

        • 21.2 Near-Field Raman Imaging Techniques

        • 21.3 Visualization of Si–C Covalent Bonding of Single Carbon Nanotubes Grown on Silicon Substrate

        • 21.4 Near-Field Scanning Raman Microscopy Using TERS

        • 21.5 Near-Field Raman Imaging Using Optically Trapped Dielectric Microsphere

        • 21.6 Conclusions

        • References

      • 22: Fullerene-Rich Nanostructures

        • 22.1 Introduction

        • 22.2 Fullerene-Rich Dendritic Branches

        • 22.3 Photoelectrochemical Properties of Fullerodendrons and Their Nanoclusters

        • 22.4 Fullerene-Rich Dendrimers

        • 22.5 Conclusions

        • Acknowledgments

        • References

      • 23: Interactions of Carbon Nanotubes with Biomolecules: Advances and Challenges

        • 23.1 Introduction

        • 23.2 Structure and Properties

        • 23.3 Debundalization

        • 23.4 Noncovalent Functionalization

        • 23.5 Dispersion of Carbon Nanotubes in Biopolymers

        • 23.6 Interaction of DNA with Carbon Nanotubes

        • 23.7 Interaction of Proteins with Carbon Nanotubes

        • 23.8 Technology Development Based on Biopolymer-Carbon Nanotube Products

          • 23.8.1 Diameter- or Chirality-Based Separation of Carbon Nanotubes

          • 23.8.2 Fibers

          • 23.8.3 Sensors

          • 23.8.4 Therapeutic Agents

        • 23.9 Conclusions

        • Acknowledgments

        • References

      • 24: Nanoparticle-Cored Dendrimers and Hyperbranched Polymers: Synthesis, Properties, and Applications

        • 24.1 Introduction

        • 24.2 Synthesis of Nanoparticle-Cored Dendrimers via the Direct Method, and their Properties and Application

        • 24.3 Synthesis of Nanoparticle-Cored Dendrimers by Ligand Exchange Reaction, and their Properties and Applications

        • 24.4 Synthesis of Nanoparticle-Cored Dendrimers by Dendritic Functionalization, and their Properties and Applications

          • 24.4.1 Nanoparticle-Cored Dendrimers by the Convergent Approach

          • 24.4.2 Nanoparticle-Cored Dendrimers by the Divergent Approach

        • 24.5 Synthesis of Nanoparticle-Cored Hyperbranched Polymers by Grafting on Nanoparticles

        • 24.6 Conclusions and Outlook

        • Acknowledgment

        • References

      • 25: Concepts in Self-Assembly

        • 25.1 Introduction

        • 25.2 Theoretical Approaches to Self-Organization

          • 25.2.1 Thermodynamics of Self-Organization

          • 25.2.2 The “Goodness” of the Organization

          • 25.2.3 Programmable Self-Assembly

        • 25.3 Examples of Self-Assembly

          • 25.3.1 The Addition of Particles to the Solid/Liquid Interface

            • 25.3.1.1 Numerically Simulating RSA

          • 25.3.2 Self-Assembled Monolayers (SAMs)

          • 25.3.3 Quantum Dots (QDs)

          • 25.3.4 Crystallization and Supramolecular Chemistry

          • 25.3.5 Biological Examples

          • 25.3.6 DNA

          • 25.3.7 RNA and Proteins

        • 25.4 Self-Assembly as a Manufacturing Process

        • 25.5 Useful Ideas

          • 25.5.1 Weak Competing Interactions

          • 25.5.2 Percolation

          • 25.5.3 Cooperativity

          • 25.5.4 Water Structure

        • 25.6 Conclusions and Challenges

        • References

      • 26: Nanostructured Organogels via Molecular Self-Assembly

        • 26.1 Introduction

        • 26.2 Block Copolymer Gels

          • 26.2.1 Concentration Effects

          • 26.2.2 Temperature Effects

          • 26.2.3 Microdomain Alignment

          • 26.2.4 Tensile Deformation

          • 26.2.5 Network Modifiers

            • 26.2.5.1 Inorganic Nanofillers

            • 26.2.5.2 Polymeric Modifiers

          • 26.2.6 Nonequilibrium Mesogels

          • 26.2.7 Special Cases

            • 26.2.7.1 Liquid Crystals

            • 26.2.7.2 Ionic Liquids

            • 26.2.7.3 Multiblock Copolymers

            • 26.2.7.4 Cosolvent Systems

        • 26.3 Organic Gelator Networks

          • 26.3.1 Hydrogen Bonding

            • 26.3.1.1 Amides

            • 26.3.1.2 Ureas

            • 26.3.1.3 Sorbitols

            • 26.3.1.4 Miscellaneous LMOG Classes

          • 26.3.2 π−π Stacking

          • 26.3.3 London Dispersion Forces

          • 26.3.4 Special Considerations

            • 26.3.4.1 Biologically Inspired Gelators

            • 26.3.4.2 Isothermal Gelation

            • 26.3.4.3 Solvent Effects

        • 26.4 Conclusions

        • Acknowledgments

        • References

      • 27: Self-assembly of Linear Polypeptide-based Block Copolymers

        • 27.1 Introduction

        • 27.2 Solution Self-assembly of Polypeptide-based Block Copolymers

          • 27.2.1 Aggregation of Polypeptide-based Block Copolymers

            • 27.2.1.1 Polypeptide Hybrid Block Copolymers

            • 27.2.1.2 Block Copolypeptides

          • 27.2.2 Polypeptide-based Hydrogels

          • 27.2.3 Organic/Inorganic Hybrid Structures

        • 27.3 Solid-state Structures of Polypeptide-based Block Copolymers

          • 27.3.1 Diblock Copolymers

            • 27.3.1.1 Polydiene-based Diblock Copolymers

            • 27.3.1.2 Polystyrene-based Diblock Copolymers

            • 27.3.1.3 Polyether-based Diblock Copolymers

            • 27.3.1.4 Polyester-based Diblock Copolymers

            • 27.3.1.5 Diblock Copolypeptides

          • 27.3.2 Triblock Copolymers

            • 27.3.2.1 Polydiene-based Triblock Copolymers

            • 27.3.2.2 Polystyrene-based Triblock Copolymers

            • 27.3.2.3 Polysiloxane-based Triblock Copolymers

            • 27.3.2.4 Polyether-based Triblock Copolymers

            • 27.3.2.5 Miscellaneous

        • 27.4 Summary and Outlook

        • References

      • 28: Structural DNA Nanotechnology: Information-Guided Self-Assembly

        • 28.1 Introduction

        • 28.2 Periodic DNA Nanoarrays

        • 28.3 Finite-Sized and Addressable DNA Nanoarrays

        • 28.4 DNA Polyhedron Cages

        • 28.5 DNA Nanostructure-Directed Nanomaterial Assembly

        • 28.6 Concluding Remarks

        • Acknowledgments

        • References

    • Index

Nội dung

Ngày đăng: 10/05/2022, 14:36

w