Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 43 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
43
Dung lượng
2,46 MB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM - - NGUYỄN THỊ HÀ TÍNH DUY NHẤT CỦA HÀM m - ĐIỀU HÒA DƯỚI TRONG CÁC LỚP CEGRELL LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN – 2019 download by : skknchat@gmail.com ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM - - NGUYỄN THỊ HÀ TÍNH DUY NHẤT CỦA HÀM m - ĐIỀU HỊA DƯỚI TRONG CÁC LỚP CEGRELL Chun ngành: TỐN GIẢI TÍCH Mã số: 8.46.01.02 LUẬN VĂN THẠC SĨ TỐN HỌC Người hướng dẫn khoa học PGS.TS Phạm Hiến Bằng THÁI NGUYÊN-2019 download by : skknchat@gmail.com LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng hướng dẫn PGS.TS Phạm Hiến Bằng Các tài liệu luận văn trung thực Các kết luận văn chưa công bố luận văn Thạc sĩ tác giả khác Tôi xin cam đoan giúp đỡ cho việc thực Luận văn cảm ơn thơng tin trích dẫn Luận văn rõ nguồn gốc Tác giả Nguyễn Thị Hà Xác nhận Xác nhận Khoa chuyên môn Người hướng dẫn khoa học TS Trần Nguyên An PGS.TS Phạm Hiến Bằng i download by : skknchat@gmail.com LỜI CẢM ƠN Bản luận văn hoàn thành Trường Đại học Sư phạm - Đại học Thái Nguyên hướng dẫn PGS.TS Phạm Hiến Bằng Nhân dịp xin cám ơn Thầy hướng dẫn hiệu kinh nghiệm trình học tập, nghiên cứu hồn thành luận văn Xin chân thành cảm ơn Phòng Đào tạo- Bộ phận Sau Đại học, Ban chủ nhiệm Khoa Toán, thầy cô giáo Trường Đại học Sư phạm - Đại học Thái Nguyên, Viện Toán học Trường Đại học Sư phạm Hà Nội giảng dạy tạo điều kiện thuận lợi cho tơi q trình học tập nghiên cứu khoa học Bản luận văn chắn khơng tránh khỏi khiếm khuyết mong nhận đóng góp ý kiến thầy cô giáo bạn học viên để luận văn hoàn chỉnh Cuối xin cảm ơn gia đình bạn bè động viên, khích lệ tơi thời gian học tập, nghiên cứu hồn thành luận văn Tháng 04 năm 2019 Tác giả ii download by : skknchat@gmail.com MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii MỞ ĐẦU 1 Lý chọn đề tài Mục đích nhiệm vụ nghiên cứu Phương pháp nghiên cứu Bố cục luận văn Chương CÁC LỚP CEGRELL ĐỐI VỚI HÀM m- ĐIỀU HÒA DƯỚI 1.1 Hàm điều hòa 1.2 Hàm m - điều hịa tốn tử Hessian phức 1.3 Các lớp Cegrell hàm m - điều hịa Chương TÍNH DUY NHẤT CỦA HÀM m - ĐIỀU HÒA DƯỚI TRONG CÁC LỚP CEGRELL 14 2.1 Tính chất tốn tử Hessian phức 14 2.2 Tích phân phần 2.3 Nguyên 18 lý so sánh lớp Emp (W) 2.4 Tính hàm m- điều hòa lớp Cegrell 2.5 Một vài áp dụng KẾT LUẬN 22 28 34 37 38 TÀI LIỆU THAM KHẢO iii download by : skknchat@gmail.com MỞ ĐẦU Lý chọn đề tài Cho W miền C n , u hàm điều hòa xác định W, u ¹ ¥ m số nguyên: £ m £ n Ta nói u hàm ˆ , bất đẳng thức m - điều hịa với h1, , hm - G m dd cu Ù h1 Ù hm - Ù wn - m ³ xảy theo nghĩa dịng, ˆ = h Ỵ C : h Ù wn - m ³ 0, , hm Ù wn - m , G m (1,1) { } w = dd c | z |2 dạng Kahler C n C (1,1) không gian (1,1) - dạng với hệ số Lớp hàm m - điều hòa S.Y Li giới thiệu lần vào năm 2004 ([10]) Sau đó, năm 2005, Z Blocki ([2]) nghiên cứu miền xác định toán tử Hessian (dd cu )m Ù wn - m Blocki chứng minh tồn nghiệm liên tục tốn Dirchlet hình cầu đơn vị C n Gần đây, L.H Chinh ([6]) dựa theo lớp Cegrell mở rộng lớp lượng hữu hạn cho hàm m - điều hịa Mục đích luận văn chứng minh điều kiện đủ cho tính hàm m - điều hịa Vì hai hàm đa điều hịa tập mở miền mà không thiết trùng (chẳng hạn u º v(z ) = max(log | z |, 0) ), nên cách tự nhiên đặt thêm giả thiết độ đo Hessian u, v để đảm bảo u º v toàn W Kết theo hướng Định lý Bloom Levenbeng tính việc mở rộng hàm đa điều hòa cực đại Định lý tìm thấy áp dụng số tốn thuyết đa vị có trọng (xem [3]) Các kết tiếp theo, ý đến iv download by : skknchat@gmail.com Định lý 0.1 ([4]) Giả sử K Ì C n tập compact lồi đa thức W miền bị chặn chứa K u, v hàm đa điều hòa bị chặn W, thỏa mãn u £ v W u = v lân cận liên thông ¶ W , v liên tục thỏa mãn (dd cv )n = W\ K Khi u = v W\ K Định lý 0.2 ([7]) Giả sử W miền siêu lồi bị chặn C n K Ì W tập lồi chỉnh hình compact W u 1, u hàm đa điều hòa âm cho điều kiện sau xảy ra: a ) lim u1(z ) = lim u 2(z ) = 0; zđ ảW zđ ảW b) (dd cu1)n Ê (dd cu )n W\ K ò (dd cu )n < ¥ ; K c) u1 < u W\ K ; d) ò (dd u ) c n K £ ò (dd u ) c n K Khi u = u W\ K Trong luận văn này, trình bày việc tổng qt hóa hai kết lớp hàm m - điều hòa Do chúng tơi chọn đề tài: “Tính hàm m - điều hòa lớp Cegrell” Đề tài có ý nghĩa thời sự, nhiều nhà tốn học ngồi nước quan tâm nghiên cứu Mục đích nhiệm vụ nghiên cứu Nghiên cứu số tính chất lớp lượng U.Cegrell hàm m - điều hoà tính hàm m - điều hoà lớp Cegrell Phương pháp nghiên cứu Sử dụng phương pháp lý thuyết đa vị phức Bố cục luận văn Nội dung luận văn gồm 38 trang, viết dựa tài liệu [1], [6] [8], v download by : skknchat@gmail.com có phần mở đầu, hai chương nội dung, phần kết luận danh mục tài liệu tham khảo Chương 1: Trình bày tổng quan số kết tính chất hàm điều hồ dưới, hàm m - điều hồ tốn tử Hessian Một số kết lớp Cegrell hàm m - điều hoà Chương 2: Là nội dung luận văn, trình bày số kết tính hàm m - điều hoà lớp Cegrell áp dụng Cuối phần kết luận trình bày tóm tắt kết đạt vi download by : skknchat@gmail.com CHƯƠNG CÁC LỚP CEGRELL ĐỐI VỚI HÀM m - ĐIỀU HÒA DƯỚI 1.1 Hàm điều hòa Định nghĩa 1.1.1 Giả sử W tập mở £ Hàm u : Wđ ộ- Ơ , + Ơ ờở ) gi điều hịa W nửa liên tục trên W thỏa mãn bất đẳng thức trung bình W, nghĩa với w Î W tồn d > cho với £ r £ d ta có u ( w) £ 2p ò 2p u ( w + re it )dt Kí hiệu tập hợp hàm điều hòa W SH (W) Mệnh đề 1.1.2 Giả sử Wlà tập mở £ , u, v Ỵ SH (W) Khi đó: (i ) m ax(u, v ) hàm điều hòa W (ii ) Tập hàm điều hòa W nón, nghĩa u, v Î SH (W) a , b > a u + b v thuộc SH (W) Định lý 1.1.3 Giả sử Wlà miền bị chặn £ , u Ỵ SH (W) Khi đó: (i ) Nếu u đạt cực đại toàn thể điểm W u số W (ii ) Nếu lim sup u (z ) £ " V ẻ ả W thỡ u Ê trờn W z® V Định lý 1.1.4 Giả sử W tập mở £ u hàm nửa liên tục trên W Khi mệnh đề sau tương đương (i ) u hàm điều hòa W (ii ) Với w Ỵ W, tồn d > cho D ( w, d > 0) Ì W với £ r < d, £ t < 2p ta có u ( w + re it ) £ 2p ò 2p d2 - r u ( w + de i q )d q 2 d - 2drcos(q - t ) + r vii download by : skknchat@gmail.com { } D( w, d > 0) = z Ỵ W: z - w £ d đĩa đóng tâm w bán kính d (iii ) Với miền D compact tương đối W h hàm điều hòa trên D, liên tục D thỏa mãn lim sup(u - h )(z ) £ ( V ẻ ả D ) zđ V ta có u £ h D Định lý 1.1.5 Giả sử {un } dãy giảm hàm điều hòa tập mở Wtrên £ u = lim un Khi u hàm điều hịa trờn W nđ Ơ 1.2 Hm m-iu hũa di v toán tử Hessian phức Ký hiệu b dạng Kahler chuẩn £ n W miền m - siêu lồi bị chặn £ n , tức tồn hàm m - điều hòa liên tục f : W® ¡ - cho {f < c} Ð W, với c < Ta kết hợp (1,1) - dạng thực a £ n với ma trận Hermitian [ a jk ] a = i p å a jk dz j Ù dz k Khi ú dng Kăahler chớnh tc b kết j ,k hợp với ma trận đồng I Ta có ( )a n k k Ù b n - k = S±k (A )b n Định nghĩa 1.2.1 C ho a (1,1) - dạng thực W Ta nói a m dương điểm cho trước P Ỵ W điểm ta có: a j Ù b n - j ³ 0, " j = 1, , k a gọi m - dương m - dương điểm thuộc W Cho T dòng song bậc (n - k, n - k )(k £ m ) Khi T gọi m - dương a Ù Ù a k ÙT ³ , với (1,1) - dạng m - dương a , , a k Định ngha 1.2.2 Hm u : Wđ Ă ẩ {- Ơ } gọi m - điều hòa viii download by : skknchat@gmail.com ò (- h )H W m (max(u, v )) £ ò (- h )H m (u ) W Từ ta nhận ị{ ị{ (- h )H m (u ) = u > v} (- h )H m (ma x( u, v)) u > v} ò £ £ (- h )H m (max( u, v)) + W ò (- h )H m (v ) + W ò{ ò{ hH m (max(u, v )) u < v} hH m (v) = u > v} ò{ (- h )H m (v) u > v} Cho h ¯ - ta điều phải chứng minh W Định lý 2.3.4 Cho u, v Ỵ Emp (W) ( p > 0) cho H m (u ) ³ H m (v ) Khi u £ v W Chứng minh (Phản chứng) Giả sử tồn z Î W cho v(z ) < u (z ) Lấy h hàm vét cạn W chọn R > cho z - z £ R , " z Ỵ W Cố định e đủ bé cho h(z ) < - eR Hàm vét cạn { } P (z ) = max h(z ), e( z - z - R ) liên tục W thoả mãn H m (P ) ³ em b n gần z Lấy h > đủ nhỏ cho v(z ) < u (z ) + hP (z ) Độ đo Lebesgue tập T = {z Ỵ W/ v(z ) < u(z ) + hP (z )}Ç B (z 0, d) dương với d > Từ suy ò T ò T H m (u + hP ) £ H m (P ) > Định lý 2.3.3 cho ta ò T H m (v ) Hơn nữa, ò T H m (u + hP ) ³ ò T H m (u ) + hm ò H m (P ) T Suy xxvii download by : skknchat@gmail.com òH T m ò (v ) ³ T H m (u ) + hm ò H m (P ) T Mâu thuẫn với giả thiết H m (u ) ³ H m (v ) Vậy u £ v W W Phiên nguyên lý so sánh hàm m - điều hòa Nó suy từ lập luận tương tự trường hợp m = n Bổ đề 2.3.5 Giả sử u, w1, wm - Ỵ F m (W) cho v ẻ SH - (W) ầ C (W) Đặt T = dd c w1 Ùdd c wm - Ù wn - m ị ị dd cu ÙT ³ {u < v } dd cv ÙT {u < v } Mệnh đề 2.3.6 Cho u Ỵ Em (W) Giả sử v Ỵ SH m (W) Ç L¥ (W) {u j } Ì Em (W) Ç L¥ (W) , u j ] u j Z ¥ Khi v(dd cu j )m Ù wn - m ® v(dd cu )m Ù wn - m yếu Chứng minh Vì tốn địa phương, nên khơng tính tổng qt, ta giả sử u , v Ỵ F m (W) Theo Định lý 3.5 [6] ta có m (dd u ) c j ( Ù wn - m ® dd cu m ) Ù wn - m yếu Hơn nữa, v hàm nửa liên tục nên ta có limsup ò v(dd cu j )m Ù wn - m < jđ Ơ W ũ v(dd u ) c m- Ù wn - m W Mặt khác, u j ³ u nên u j Ỵ Fm (W) Từ đó, áp dụng Định lí 2.2.1 ta ị v(dd u ) c m j Ù wn - m = W ò u (dd u ) c m- j j Ù dd cv Ù wn - m W ³ ò u(dd u ) c m- j Ù dd cv Ù wn - m W = ò u (dd u ) c j m- j Ù dd cu Ù dd cv Ù wn - m W xxviii download by : skknchat@gmail.com ³ ò u(dd u ) c m- j Ù dd cu Ù dd cv Ù wn - m W ³ ³ ò u(dd u ) c m- Ù dd cv Ù wn - m W = ò v(dd u ) c m Ù wn - m W Vì v Ỵ SH (W) Ç L¥ (W) nên lim inf ị v(dd cu j )m wn - m jđ Ơ W ũ v(dd u ) c m Ù wn - m > - ¥ W Từ ta v(dd cu j )m Ù wn - m ® v(dd cu )m Ù wn - m yếu Ta hoàn tất phép chứng minh Mệnh đề 2.3.7 Cho WÌ C n miền 1- siêu lồi Khi E1(W) = SH - (W) Chứng minh Cho u Ỵ SH - (W) U Ð W tập mở tùy ý Đặt ( { wj = sup j Ỵ SH (W) : j £ max (u, - j )trênU - * }) Vì W miền 1- siêu lồi, nên wj Ỵ E10(W), u £ wj + £ wj W wj hàm điều hòa W\ U Bằng cách ước lượng tiêu chuẩn sử dụng cơng thức tích phân phần, ta thấy độ đo Laplacian tổng cộng wj bị chặn W Bổ đề 2.3.8 Cho WÌ £ n , u ẻ SH (W) ầ LƠ (W) v v ẻ SH (W) Khi lim udd cva Ù wn - = udd cv Ù wn - , va = m ax(v, a ) a® - ¥ Chứng minh Vì tốn địa phương, nên ta giả sử W hình cầu u, v < W Theo Mệnh đề 2.3.7 ta có v Ỵ E1(W) Do đó, theo Mệnh đề 2.3.6 ta có lim udd cva Ù wn - = udd cv Ù wn - a® - ¥ xxix download by : skknchat@gmail.com Ta cần kết sau, nói hàm m điều hòa liên tục miền m siêu lồi W điều chỉnh thành phần tử Em0 (W) Bổ đề 2.3.9 Cho u Ỵ SH m (W) Ç C (W) Khi với tập mở G Ð W, tồn y G Ỵ Em0 (W) cho u - y G = const G Chứng minh Cho hàm vét cạn m – điều hòa liên tục, âm, bị chặn W Chọn < d1 < d2 cho G Ð G = {r < - d2 } Ð G = {r < - d1 }1 = Đặt a = infG u b = infG u Khi hàm số y := b- a m ax {r + d2, 0}+ a d2 - d1 nhỏ u G lớn u ¶ G Điều suy ra, hàm v = m ax (y , u ) G y W\ G m – điều hòa W Ta cú v ẻ SH m (W) ầ LƠ (W), v = u trờn G v v ổỡù ỗ y G = sup ỗỗùớ j ẻ SH m (W) : j Ê u ỗốùùợ Vỡ j G ảW = (b - a )d2 + a Đặt d2 - d1 ổ(b - a )d ữ ữ ỗỗ ÷ ÷ + a tr ê n G }÷÷÷ ữ ỗỗố d - d ữ ứ ứ * hàm m điều hòa m cực đại W\ G nên theo [2] ta có ò (dd y c G )m Ù wn - m = W\ G ỉ(b - a )d ÷ + a÷ £ y G , nên Do ú y G ẻ Em0 (W) Vỡ v - ỗỗỗ ữ ữ ỗố d2 - d1 ứ ổ(b - a )d ỗ ữ u - y G = çç + a÷ G ÷ ÷ çè d2 - d1 ø W xxx download by : skknchat@gmail.com 2.4 Tính hàm m điều hịa lớp Cegrell Định nghĩa 2.4.1 Cho W miền £ n K tập compact W Khi K gọi là: (a ) Lồi phân hình W với z Î W\ K tồn hàm chỉnh hình f W cho f (z ) Ï f (K ) (b) Lồi chỉnh hình W với z Ỵ W\ K , tồn hàm chỉnh hình f W cho sup K f < f (z ) Bổ đề 2.4.2 Cho W miền bị chặn £ n K Ì W tập lồi chỉnh hình compact W Giả sử G Ð W tập mở W f hàm chỉnh hình W cho Ï f (K ) sup K f < Khi với e Ỵ (0,1) với lân cận mở U K cho G \ U ặ u tn ti j Ỵ PSH (W) Ç C (W) thỏa mãn tính chất sau: a ) j º lân cận K b) j = log max(| f |, e) + y G \ U , y ẻ PSH (W) ầ C (W) c) j a điều hòa chặt G \ U Để chứng minh kết ta cần bổ đề sau Bổ để 2.4.3 Cho WÌ D miền bị chặn £ n K Ì D tập lồi phân hình, compact D Giả sử u, v Ỵ SH (W) cho dd c log | f | Ùwn - = WÇ {u ¹ v} với hàm chỉnh hình f D với Ï f (K ) Khi u = v W\ K Chứng minh Đặt X = {z ẻ W\ K : u(z ) v(z )} Giả sử X ¹ f Khi u, v hàm điều hòa nên suy l 2n (X ) > Do tồn a Ỵ X cho l 2n (U Ç X ) > với lân cận U a Vì K lồi phân hình W, nên tồn hàm chỉnh hình hình cầu đủ bé chứa a thỏa mãn: (i ) f (B ) Ç f (K ) = f ; xxxi download by : skknchat@gmail.com (ii ) l 2n (X Ç B ) > Do nhiễu f đủ nhỏ, ta cú th gi s ảf trờn B Do đó, ta ¶ z1 chọn hình cầu đủ bé B ¢ compact tương đối B (có thể chứa a) cho : (iii ) l 2n (X ầ B Â) > (iv ) ảf ¶ z1 khơng triệt tiêu B ¢ Xét ánh xạ: F : W® £ n xác định bởi: F (z ) = ( f (z ), z 2, , z n ) Như F vi phơi địa phương từ B ¢tới F (B ¢) Do theo (iii ) , suy l 2n ( X ¢) > , X ¢:= F (X ầ B Â) Bõy gi c nh x Ỵ B đặt S x := {z Ỵ B ¢: f (z ) = f (x)} Theo (iv ) S x siêu mặt phức trơn S x Ç K = f Đặt g = f - f ( x) Vì ¹ g(K ) , nên theo giả thiết ta có dd c log | g | Ùwn - = B Âầ {u v } Mt khỏc, theo cụng thức Lelong – Poincare, dd c log | g | dịng tích phân S x Do vậy, u = v độ đo mặt S x Cuối cùng, ta xét p : £ n ® £ p : £ n ® £ n - phép chiếu xác định p1 (z 1, , z n ) = z 1, p (z 1, , z n ) := (z 2, , z n ) Theo lập luận ta có: l 2n - 2(p2- 1(t ) Ç X Â) = 0, " t ẻ p1(X Â) Áp dụng Định lý Fubini ta có l 2n (X ¢) = Mâu thuẫn với l 2n ( X ¢) > Định lý 2.4.4 Cho W miền m – siêu lồi bị chặn £ n K Ì W tập lồi phân hình compact W Giả sử u , v Î F m (W) thỏa mãn: a) ò j (dd u ) c W m Ù wn - m ³ ò j (dd v ) c m Ù wn - m với j Ỵ Em0 (W) đa điều W hòa lân cận mở K W xxxii download by : skknchat@gmail.com b) u £ v W\ K Khi u v W\ K Chứng minh Theo Bổ đề 2.4.2, ta cần chứng minh f hàm chỉnh hình W cho Ï f (K ) dd c log | f | Ùwn - = {u < v } Lấy e Ỵ (0, infK | f |) Đặt fe = m ax (log | f |, log e) Giả sử G tập mở W cho K Ð G é W Vỡ fe ẻ PSH (W) ầ C (W) nên theo Bổ đề 2.3.9 tồn y G Î Em0 (W) cho fe - y G = const G Ta chia phép chứng minh thành bước Bước 1: Ta chứng minh (v - u )dd c y G Ù (dd cu )m - Ù wn - m = W Đặt T = å m- j= (dd cu ) j Ù (dd cv )m - j - Ù wn - m Vì dd c y G = dd c f e = lân cận đủ bé K , nên theo giả thiết (b) ta nhận (v - u )dd c y G ÙT ³ W Từ suy 0£ ị (v - u )dd c y G ÙT = W = òy W òy G dd c (v - u ) ÙT W G é(dd cv )m Ù wn - m - (dd cu )m Ù wn - m ù£ ëê ûú Trong bất đẳng thức cuối suy từ giả thiết (a) Do (v - u )dd c y G ÙT = W Hơn ta có: dd c y G Ù (dd cu ) j Ù (dd cv )m - j - Ù wn - m ³ W với j = 0,1, , m - Từ (v - u )dd c y G (dd cu )m - Ù wn - m = W Bước 2: Ta chứng minh dd c fe Ù wn - = {u < v } xxxiii download by : skknchat@gmail.com Lấy a > cho | z |2 - a < - W, {v j } Ì Em0 (W) Ç C (W) cho v j ] v j Z + ¥ Cố định d > Theo Bổ đề 2.3.5 ta có ị (v j - u ) dd c y G Ù (dd cu )m - Ù wn - m W ³ (v j - u ) dd c y G Ù (dd cu )m - Ù wn - m {u < v + d(|z | - a )} ò j c c m- n- m ³ d ò dd y G Ù (dd u ) Ù w {u < v + d(|z | - a )} j ³ d ( ò m- ) dd c y G Ù dd c (v j + d(| z |2 - a ) Ù wn - m {u < v + d(|z | - a ) j ³ dm dd c y G Ù wn - ò {u < v + d(|z | - a ) j ³ dm dd c y G Ù wn - ³ {u < v + d(|z | - a )} ò Hơn nữa, theo Định lý hội tụ trội Lebesgue ta cú ũ (v lim jđ + Ơ j - u ) dd c y G Ù (dd cu )m - Ù wn - m W = ò (v - u ) dd c y G Ù (dd cu )m - Ù wn - m = W Từ ta có dd c y G Ù wn - = {u < v + d(|z | - a )} ò Cho d ] ta dd c y G Ù wn - = {u < v } Chú ý dd c f e = dd c y G G, nên dd c f e wn - = G Ç {u < v } Cuối cùng, cho G Z W ta điều phải chứng minh bước Bước 3: Ta chứng minh dd c log | f | Ùwn - = b ẻ Ô Vi mi e ẻ (0, infK | f |) Theo bước ta có xxxiv download by : skknchat@gmail.com {u < v } Lấy dd c fe Ù wn - = WÇ {u < b < v } Suy max(v - b, 0) dd c fe Ù wn - = WÇ {u < b} Cho d ] , {u < b} tập mở nên theo Bổ đề 2.3.8 ta có max(v - b, 0) dd c log | f | Ùwn - = WÇ {u < b} Từ dd c log | f | Ùwn - = WÇ {u < b < v } Do dd c log | f | Ùwn - = WÇ {u < v } Định lý 2.4.5 Cho D miền bị chặn £ n K tập lồi chỉnh hình compact D Giả sử WÌ D miền m siêu lồi u , v Ỵ Em (W) cho: a) u = v lân cận mở (¶ W) \ K b) (dd cu )m Ù wn - m ³ (dd cv )m Ù wn - m W\ K c) u £ u W\ K Khi u = v W\ K Chứng minh Cho f hàm chỉnh hình D cho Ï f (K ) theo Bổ đề 2.4.2, ta cần dd c log | f | Ùwn - = {u < v } Khơng tính tổng qt, giả sử sup | f |< f Cố định e Î (0, infK | f |) K Lấy V lân cận ¶ (W\ K ) cho u = v V Ç W, U Ð D lân cận K cho e < infU | f | Đặt W¢= W\ (V È U ) Ta có W¢Ð W Lấy G : W¢Ð G Ð W cho u = v W\ (G È K ) Theo Bổ đề 2.4.2, tồn xxxv download by : skknchat@gmail.com j ẻ PSH (W) ầ C (W) v y ẻ PSH (G \ U ) ầ C (G \ U ) : j ³ , j º lân cận K j = fe + y , fe = max {log | f |, log e} Đặt T = m- å (dd cu ) j Ù (dd cv )m - j - Ù wn - m j= Chn c ẻ C 0Ơ (W) cho £ c £ W c = G Vì u = v W\ G c j = lân cận ¶ (W\ K ) , sử dụng Định lý Stokes ta 0³ ò cj W\ K = é(dd cv )m Ù wn - m - (dd cu )m Ù wn - m ù ú ëê û ò c j dd (v c u ) ÙT = W\ K = ò (v W/ K ò (v - u ) dd c ( c j ) ÙT = ò (v - G/ K = u ) dd c ( c j ) ÙT u )dd cj ÙT G/ K ò (v - u )dd cj ÙT ³ W/ K Từ suy (v - u )dd cj ÙT = W Vì dd cj = dd c f e + dd c y ³ dd c f e ³ G \ U nên suy (v - u )dd c f e Ù (dd cu )m - Ù wn - m = G \ U Bõy gi chn u Âẻ F m (W) cho u ³ u ¢ W u ¢= u G Đặt v ¢= max(v, u ¢) Theo giả thiết lựa chọn G ta cú v Âẻ F m (W), u ÂÊ v ¢ u ¢= u W\ (G È U ) Từ suy m- (v ¢- u ¢)dd c fe Ù (dd cu ¢) Ù wn - m = W\ U Vì dd c f e = U nên ta (v ¢- u ¢)dd c fe Ù (dd cu ¢)m - Ù wn - m = W Do đó, theo phép chứng minh bước bước Định lý 2.4.4 ta có xxxvi download by : skknchat@gmail.com dd c log | f | Ùwn - = {u ¢< v ¢} Suy dd c log | f | Ùwn - = {u < v } W 2.5 Một vài áp dụng Ta áp dụng kết tính điều kiện đủ hội tụ yếu dãy hàm m - điều hòa Mệnh đề 2.5.1 Cho W miền m - siêu lồi bị chặn £ n K Ì W tập compact lồi phân hình Cho u,{u j }j ³ hàm thuộc F m (W) thỏa mãn điều kiện sau: (a ) {u j }j ³ không hội tụ đến - ¥ tập compact W\ K (b) u j £ u W\ K với j ³ (c ) lim j (dd c u j )m Ù wn - m = jđ Ơ ũ W ũ j (dd u ) w c n- m với j Ỵ Em0 (W) đa W điều hòa lân cận mở K W m (d ) sup ò (dd cu j ) Ù wn - m < ¥ j³ W Khi u j ® u L1loc (W\ K ) Chứng minh Từ (a) suy dãy {u j }j ³ compact L1loc (W) Chỉ cần kiểm tra u = v W\ K với điểm tụ v tùy ý {u j }j ³ L1loc (W) Cho v điểm tụ Khi tồn dãy {u jk }k ³ cho æ trờn W v = ỗỗlim sup u ik ữ ữ ữ ố kđ Ơ ứ * t vk = (suph³ u jk + h )* , v k ] v k Z ¥ Hơn nữa, theo (b) ta có v £ u W\ K Ta v Ỵ F m (W) Chú ý rằng, v ik £ v k W ta có vk Ỵ F m (W) Theo Mệnh đề 2.2.3 (a) giả thiết (d) ta xxxvii download by : skknchat@gmail.com m m lim sup ò (dd cvk ) Ù wn - m £ lim sup ò (dd cu jk ) Ù wn - m < Ơ kđ Ơ kđ Ơ W W Từ đó, theo Mệnh đề 2.2.3 (c) ta v Î F m (W) với j Î em0 (W) đa điều hòa lân cận mở K , theo Mệnh đề 2.2.3 giả thiết (c) ta nhận m c m n- m c n- m ò j (dd v ) Ù w = lim ò (dd vk ) w kđ Ơ W W m ³ lim ò j (dd cu jk ) Ù wn - m = kđ Ơ W m c n- m ò j (dd u ) Ù w W Do đó, theo Định lý 2.4.4 ta nhận u = v W\ K W Mệnh đề 2.5.2 Cho W miền siêu lồi bị chặn £ n K tập lồi đa thức compact £ n Giả sử {u j }j ³ dãy F m (W) thỏa mãn điều kiện sau: (a ) Tồn j Ỵ SH m- (W) cho lim inf ò j (dd cu j )m Ù wn - m > - ¥ jđ Ơ W (b) Tn ti u ẻ SH m- (W) ầ LƠloc (W\ K ) cho lim sup u j(z ) £ u (z ), " z ẻ W/ K jđ Ơ v (dd cu )m wn - m = W\ K (c ) u j ® u L1loc (U ) j đ Ơ , ú U l lõn cn mở ¶ (W\ K ) Khi u j ® u L1loc (W\ K ) j ® ¥ Chứng minh Theo giả thiết (c) ta suy dãy {u j }j ³ không hội tụ đến - ¥ tập compact W Như dãy compact L1loc (W) Từ cần điểm tụ v {u j }j ³ trùng với u W\ K Cố định v thế, tồn dãy {u jk }k ³ cho v = (lim u jk )* Từ (c) kđ Ơ suy u = v U Tiếp theo ta v Ỵ Em (W) Thật vậy, đặt xxxviii download by : skknchat@gmail.com vk = (sup u jk + h )* h³ Vì u jk £ vk W nên suy vk Î F m (W) Từ đó, theo Mệnh đề 2.2.3 ta lim inf ò j (dd cvk )m Ù wn - m ³ lim inf ò j (dd cu jk )m wn - m kđ Ơ kđ ¥ W W ³ lim inf ò j (dd cu j )m Ù wn - m > - ¥ kđ Ơ W Hn na, vỡ v k ] v k Z ¥ nên theo Mệnh đề 2.2.3 ta v Ỵ Em (W) Chú ý v £ u (W) , nên u Ỵ Em (W) Hơn nữa, theo giả thiết (b) ta có (dd cu )m Ù wn - m = W\ K Như (dd cv )m Ù wn - m ³ (dd cu )m Ù wn - m W\ K Áp dụng Định lý 2.4.5 ta kết luận u = v W\ K xxxix download by : skknchat@gmail.com KẾT LUẬN Luận văn trình bày: + Tổng quan hệ thống số kết tính chất hàm điều hồ dưới, hàm m - điều hồ tốn tử Hessian + Một số tính chất lớp lượng U.Cegrell hàm m - điều hồ dưới, cơng thức tích phân phần, nguyên lí so sánh lớp Cegrell + Một số kết tính hàm m - điều hoà lớp Cegrell áp dụng xl download by : skknchat@gmail.com TÀI LIỆU THAM KHẢO TIẾNG VIỆT [1] Nguyễn Quang Diệu Lê Mậu Hải (2009), Cơ sở lí thuyết đa vị, Nxb Đại học sư phạm TIẾNG ANH [2] Blocki Z., (2005), “Weak solution to the complex Hessian equation”, Ann Inst Fourier (Grenoble) 55, no 5, 1735-1756 [3] Bloom T., Levenberg N., (2003), “Weighted pluripotential theory”, Amer J Math 125, 57–103 [4] Cegrell U., (1998), “Pluricomplex energy”, Acta Math 180, 187–217 [5] Cegrell U., (2004), “The general definition of the complex Monge– Ampère operator”, Ann Inst Fourier (Grenoble) 54, 159–179 [6] Chinh L H., (2013), “On Cegrell’s classes of m-subharmonic functions”, arXiv:1301.6502v1 [math.CV] [7] Dieu N Q., (2011), “A unicity theorem for plurisubharmonic functions”, Ann Polon Math 100(2), 159–165 [8] Dieu N.Q., Bang P.H., Hong N.X., (2014), “Uniqueness properties of m-subharmonic functions in Cegrell classes”, J Math Anal Appl 420, no1, 669-683 [9] Duval J., Sibony N., (1995), “Polynomial convexity and rational convexity”, Duke Math J 79, 478–513 [10] Li S.Y., (2004), “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J Math 8(1), 87–106 [11] Persson L., (1999), “ A Dirichlet principle for the complex Monge-Amp`ere operator”, Ark Mat 37, no 2, 345-356 xli download by : skknchat@gmail.com ... ĐIỀU HÒA DƯỚI 1.1 H? ?m điều hòa 1.2 H? ?m m - điều hịa tốn tử Hessian phức 1.3 Các lớp Cegrell h? ?m m - điều hòa Chương TÍNH DUY NHẤT CỦA H? ?M m - ĐIỀU HÒA DƯỚI TRONG CÁC LỚP CEGRELL 14 2.1 Tính chất... chất h? ?m điều hồ dưới, h? ?m m - điều hồ tốn tử Hessian + M? ??t số tính chất lớp lượng U .Cegrell h? ?m m - điều hồ dưới, cơng thức tích phân phần, nguyên lí so sánh lớp Cegrell + M? ??t số kết tính h? ?m m. .. W m Ù b n- m £ 4m max e (j 1£ i £ m c em éê1 - 2m e p ù ú ë û từ suy kết cần chứng minh i ), W xvi download by : skknchat@gmail.com CHƯƠNG TÍNH DUY NHẤT CỦA H? ?M m - ĐIỀU HÒA DƯỚI TRONG CÁC LỚP