Tài liệu tham khảo công nghệ thông tin Xử lý song song quá trình sinh khóa của hệ thống cấp phát chứng thực số
Trang 1Nguyễn Thanh Hào
XỬ LÝ SONG SONG QUÁ TRÌNH SINH KHÓACỦA HỆ THỐNG CẤP PHÁT CHỨNG THỰC SỐ
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Công nghệ thông tin
HÀ NỘI - 2010
Trang 2Nguyễn Thanh Hào
XỬ LÝ SONG SONG QUÁ TRÌNH SINH KHÓACỦA HỆ THỐNG CẤP PHÁT CHỨNG THỰC SỐ
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Công nghệ thông tin
Cán bộ hướng dẫn: PGS.TSKH Phạm Huy Điển
HÀ NỘI - 2010
Trang 3Khóa luận có trình bày về một số vấn đề của an toàn thông tin hiện đại Các vấnđề đó đều dẫn đến một nhu cầu bức thiết là phải xây dựng một hệ thống chứng thực số,tạo điều kiện cho các ứng dụng chữ ký số phát triển Phần tiếp theo là các lý thuyết vềchứng thực và chữ ký số, hệ thống chứng thực số CA ứng dụng hệ mã RSA mà cốt lõilà quá trình sinh khóa Thực chất của quá trình sinh khóa là sinh ra một cặp số nguyêntố p,q thỏa mãn được các tính chất là số nguyên tố xác suất mạnh Với yêu cầu về sốnguyên tố như thế, phần tiếp theo khóa luận có đề cập đến các lý thuyết về số nguyêntố, việc kiểm tra số nguyên tố, và các tính chất để một số nguyên tố được gọi là mạnh.Với một khối lượng tính toán trên số nguyên lớn như vậy, xử lý tuần tự là không đápứng được nhu cầu về thời gian, cho nên một phương pháp xử lý song song trên CPU(central processing unit) đã được nhắc đến Đó chính là bộ công cụ Visual Studio 2010của Microsoft Phần cuối của khóa luận là các kết quả đạt được và định hướng chotương lai.
3
Trang 4LỜI MỞ ĐẦU 5
NỘI DUNG 3
Chương 1 Những vấn đề của an toàn thông tin hiện đại 3
1.1 An toàn thông tin hiện đại 3
1.2 Chứng thực và chữ ký số 3
1.2.1 Hệ mã khóa công khai và việc tạo chữ ký số 3
1.2.2 Chứng thực số 8
1.3 Vai trò của CA và vấn đề then chốt trong thiết lập CA 10
1.3.1 Vai trò của CA 10
1.3.2 Sử dụng chứng thực số 10
1.3.3 Các chức năng cơ bản của CA 11
1.3.4 Vấn đề then chốt trong thiết lập CA 13
Chương 2 Một số công cụ toán học liên quan 15
2.1 Số nguyên tố và hệ mã khóa công khai RSA 15
2.1.1 Hệ mã khóa công khai RSA 15
2.1.2 Lý thuyết toán học về số nguyên tố và các vấn đề liên quan 17
2.2 Việc tính toán số nguyên tố và khái niệm số giả nguyên tố Kiểm tra số giả nguyên tố mạnh 20
2.2.1 Thuật toán kiểm tra số nguyên tố thông thường và khái niệm số giảnguyên tố 20
2.2.2 Kiểm tra số giả nguyên tố mạnh 20
2.2.3 Tính nguyên tố mạnh của một số 25
2.3 Chìa khóa an toàn 26
Chương 3 Tính toán song song 28
3.1 Xử lý song song, cơ hội và thách thức [8] 28
3.1.1 Cơ hội 29
3.1.2 Những thách thức: Các vấn đề khó khăn gặp phải khi xử lý song song 303.1.3 Giải pháp: Các công nghệ song song trong Visual Studio 2010 Microsoft 32
3.2 Lập trình song song với Visual Studio 2010 [8] 33
3.2.1 Thư viện 33
3.2.2 Các mô hình lập trình song song và ví dụ 34
3.2.3 Kết luận 38
Chương 4 Kết quả triển khai và tính thử nghiệm 39
4.1 Giới thiệu về chương trình ứng dụng 39
4.1.1 Mục đích và hoạt động của chương trình 39
4.1.2 Một số hình ảnh về chương trình 40
4.2 Một số thống kê khi chạy chương trình trên chip intel core2duo 2.2 GHZ 43
PHỤ LỤC 44
A Thuật toán Miller-Rabin 44
B Thuật toán Lucas 44
C Thuật toán kiểm tra nguyên tố mạnh 45
KẾT LUẬN 47
TÀI LIỆU THAM KHẢO 48
4
Trang 5Hiện nay, ở các nước phát triển cũng như đang phát triển, mạng máy tính đóngvài trò quan trọng trong mọi lĩnh vực hoạt động của xã hội, và một khi nó trở thànhphương tiện điều hành các hệ thống thì nhu cầu bảo mật thông tin được đặt lên hàngđầu Nhu cầu này không chỉ có ở các bộ máy của nhà nước, mà đã trở thành bức thiếttrong nhiều hoạt động kinh tế xã hội: tài chính, ngân hàng, thương mại … Những ứngdụng trong dân sự của an toàn thông tin ngày càng được phát triển, mở rộng đặc biệt làchữ ký số Khi các văn bản tài liệu đã được số hóa, được chuyển đi rất nhanh trong hệthống mạng thì ký tay thông thường là một trở ngại cho các hoạt động trao đổi thôngtin Bên cạnh đó, một hệ thống chứng thực thông tin, chứng thực số là cần thiết đượcphát triển khi mà nhu cầu trao đổi thông tin, xác thực thông tin của các cơ quan, xínghiệp, ngân hàng,… ngày càng tăng đi kèm với sự phát triển mạnh của cơ sở hạ tầngmạng Hệ thống chứng thực số CA (certificate authority) là một giải pháp cho vấn đềnày
Với CA, mỗi người tham gia vào hệ thống được cấp phát một cặp chìa khóa bímật, công khai Khi muốn gửi thông tin người sử dụng lấy chìa khóa bí mật mã hóavăn bản và gửi đi, người nhận sẽ lấy chìa khóa công khai của người gửi để giải mã.Đồng thời với sự chứng thực của hệ thống CA, đoạn thông tin đó sẽ được đảm bảo làthuộc về người gửi Ngoài ra, với những giấy tờ, hợp đồng kinh tế, … cần có chữ kýcủa các bên liên quan, người ký có thể sử dụng chìa khóa bí mật để mã hóa văn bản.(Hành động này giống như ký tay trên giấy tờ hành chính thông thường) Như vậy,việc xây dựng hệ thống CA là quan trọng, cần thiết trong đời sống xã hội mà côngnghệ thông tin đóng vài trò chủ chốt trong giao dịch, buôn bán
Một ví dụ cụ thể, trung tâm tin học thuộc viện nghiên cứu khoa học và công nghệViệt nam đang có dự án xây dựng hệ thống CA để phát triển các ứng dụng của chữ kýsố và chứng thực điện tử Kết quả của khóa luận này sẽ được dùng trong quá trình rấtquan trọng của hệ thống CA sắp tới được phát triển – cấp phát khóa.
Vấn đề then chốt của hệ thống CA là quá trình cấp phát và chứng thực một khóacó thuộc về một cá thể nào đó hay không Quá trình cấp phát khóa về thực chất là sinhra một cặp số nguyên tố thỏa mãn các yếu cầu để được là nguyên tố mạnh Những tínhtoán trên số nguyên lớn đòi hỏi thời gian rất lâu để sinh ra một cặp số như vậy, chưa kểđến thời gian kiểm tra thỏa mãn tính nguyên tố mạnh Hơn thế nữa, một hệ thống CAkhi được triển khai nếu gặp tình trạng có nhiều người sử dụng truy cập tại một thời
5
Trang 6yêu cầu Một giải pháp được đưa ra là xử lý song song trong quá trình sinh khóa củahệ thống CA
Thời gian trước, công nghệ xử lý song song được thực hiện trên các cụm nhiềumáy chủ do thời ấy một CPU (central processing unit) không có nhiều nhân Ngày nay,với sự phát triển vượt bậc của công nghệ phần cứng, các hãng phần cứng nổi tiếng thếgiới đã nghiên cứu và liên tục cho ra đời nhiều bộ xử lý tích hợp nhiều lõi bên trong(2, 4, 8 thậm chí 16 lõi) Đây là một thời điểm thuận lợi để ứng dụng công nghệ xử lýsong song trên một CPU có nhiều nhân Một phương án khác có lợi hơn về mặt kinh tếlà tính toán trên card đồ họa (graphic card) Card đồ họa tuy có thế mạnh về xử lývector (xử lý nhiều bộ số một lúc) nhưng công nghệ song song còn chưa phát triển(chưa có thư viện cần thiết để sinh được một cặp số nguyên tố lớn và kiểm tra tínhnguyên tố mạnh của chúng) Vì vậy, xử lý song song trên CPU nhiều nhân là mộtphương án hợp lý, cân đối về mặt kinh tế và công nghệ hỗ trợ cũng như là tốc độ Tậpđoàn Microsoft mới cho ra đời bộ công cụ Visual Studio 2010 hỗ trợ xử lý song songtrên CPU nhiều nhân, đồng thời có thư viện xử lý số nguyên lớn C Sharp (C#) – mộtngôn ngữ lập trình trong bộ công cụ này sẽ được sử dụng để phát triển giai đoạn quantrọng ban đầu của một hệ thống CA – sinh khóa.
6
Trang 7NỘI DUNG
Chương 1 Những vấn đề của an toàn thông tin hiện đại
1.1 An toàn thông tin hiện đại
Hiện nay, ở tất cả các nước phát triển cũng như đang phát triển, mạng máy tínhđang đóng vài trò thiết yếu trong mọi lĩnh vực hoạt động của toàn xã hội, và một khinó trở thành phương tiện điều hành các hệ thống thì nhu cầu bảo mật thông tin đượcđặt lên hàng đầu Nhu cầu này không chỉ có ở các bộ máy An ninh, Quốc phòng, Quảnlý Nhà nước, mà đã trở thành bức thiết trong nhiều hoạt động kinh tế xã hội: tài chính,ngân hàng, thương mại …
An toàn thông tin ngày nay không đơn thuần là việc giữ bí mật những thông tinquan trọng (được áp dụng trong quân đội, bộ quốc phòng, an ninh quốc gia …) mà cònlà chứng thực thông tin (thông tin đó thuộc về một cá nhân, tập thể cụ thể nào đó).Những ứng dụng của an toàn thông tin dân sự, đặc biệt là chữ ký số ngày càng pháttriển, mở rộng và có phần áp đảo so với quân sự Bởi lẽ những thành phần tham giahoạt động mã hóa thông tin trong quân đội hay bộ quốc phòng chỉ là một nhóm ngườicòn tham gia vào hoạt động này ở dân sự là tất cả những ai có nhu cầu chứng thựcthông tin, cung cấp, tiếp nhận thông tin trên hệ thống mạng máy tính Một hệ thốngchứng thực thông tin, chứng thực số là cần thiết được phát triển khi mà nhu cầu traođổi thông tin, xác thực thông tin ngày càng tăng đi kèm với sự phát triển mạnh của cơsở hạ tầng mạng.
1.2 Chứng thực và chữ ký số
1.2.1 Hệ mã khóa công khai và việc tạo chữ ký số
Nguyên lý hoạt động của hệ mã khóa công khai [4]
Hệ mã khóa công khai (hay còn gọi là các hệ mã phi đối xứng) được phát minh ra
trong những thập kỷ cuối của thế kỷ vừa qua Nó sử dụng 2 chìa khóa riêng biệt cho
việc lập mã và giải mã văn bản Chìa dùng cho việc lập mã có thể được công bố cho
mọi người biết (chìa công khai), còn chìa dùng cho việc giải mã thì được giữ bí mật
tuyệt đối Việc biết được chìa khóa công khai không cho phép tính ra chìa khóa giải
mã Mỗi cá thể k tham gia vào hệ thống được cấp phát riêng một cặp chìa khóa( ,E D , trong đó kk) E là chìa khóa lập mã, còn kD là chìa khóa giải mã Khi mã hóak
một văn bản P (bằng chìa E ) ta sẽ được một văn bản mã ký hiệu là kC =E Pk( ).Văn bản này chỉ có thể được giải mã bằng chìa khóa D (cùng cặp với kE ), nghĩa làk
D C =D E P = P
Trang 8Khi một cá thể i nào đó muốn giử thông điệp M cho đối tác k thì anh ta dùngchìa khóa lập mã E của đối tác kk (đã được biết công khai) để mã hóa văn bản và gửiđi dưới dạng thông điệp mã C = E Mk( ) Khi đối tác k nhận được thông điệp này thìdùng chìa khóa giải mã của mình (là D ) để giải mã ra theo nguyên lý đã nêuk
Ký điện tử trong hệ mã khóa công khai [3][5][13]
Với hệ mã khóa công khai, một quy trình ký văn bản điện tử được thiết lập dựa
trên ý tưởng của hai nhà khoa học Diffie và Hellman [5][13]:
Người gửi (chủ nhân văn bản) ký văn bản bằng cách mã hóa nó với khóa bí mậtcủa mình rồi gửi cho người nhận.
Người nhận văn bản (đã ký) tiến hành kiểm tra chữ ký bằng cách sử dụng chìakhóa công khai của người gửi để giải mã văn bản Nếu giải mã thành công thìvăn bản ký là đúng của người gửi.
Giao thức này mang đầy đủ các thuộc tính của thủ tục ký thông thường Thật vậy: Chữ ký là sản phẩm của người đã chủ động tạo ra nó, tức là người đã dùng
chiếc chìa khóa bí mật của mình để mã hóa văn bản.
Chữ ký cho biết chủ nhân của nó chính là người sở hữu chiếc chìa khóa bí mậtđã được dùng để mã văn bản (kiểm tra bằng cách cho giải mã bằng chìa khóacông khai của người đó) Không ai làm giả được “chữ ký” vì rằng chỉ có duynhất một người có chìa khóa bí mật đã dùng để “ký” (mã hóa).
Chữ ký cho văn bản này không thể “tái sử dụng” cho văn bản khác Thật vậy,việc biết chữ ký (văn bản mã) không cho phép tìm ra được chìa khóa bí mật củangười gửi (để có thể ký một văn bản khác).
Văn bản đã ký không thể thay đổi (xuyên tạc) được nội dụng Thật vậy, nếu đãmở ra để thay đổi thì không thể “ký lại” được nữa, vì không có chiếc chìa khóabí mật của “người đã ký” (như đã nói ở trên).
Người ký văn bản không thể thoái thác việc mình “đã ký”, vì ngoài ông ta rakhông còn ai có cái chìa khóa đã được dùng để “ký” văn bản.
Trang 9Rõ ràng, về mặt logic thì quy trình ký như trên là rất hợp lý Mọi thành viên tham gia
sử dụng một hệ mã khóa công khai đều có được khả năng ký văn bản điện tử (bằng
chìa khóa bí mật của riêng mình) và kiểm tra chữ ký của những người khác (bằng chìakhóa công khai mà họ đã công bố).
Việc dùng chìa khóa bí mật để mã hóa văn bản được gọi là ký điện tử, và kết quảtạo ra là một dữ liệu dạng số, sẽ được gọi là chữ ký số [6]
Trong thực tiễn triển khai, mọi người đều biết tốc độ mã hoá của các hệ mãkhoá công khai là vô cùng chậm Cho nên, việc ký một văn bản dài (như thông tư,nghị định, văn kiện, ) theo quy trình nêu trên là không khả thi trên thực tiễn
Để khắc phục khó khăn này, người ta sử dụng một hàm “chiết xuất” đặc trưng
văn bản Hàm này nhận giá trị đầu vào là văn bản (độ dài tùy ý) và cho đầu ra là một
dãy số có độ dài xác định, gọi là mã băm (message digest) Hàm chiết xuất có thuộc
tính quan trọng là rất “nhạy” đối với các thay đổi của văn bản, theo đó chỉ cần mộtthay đổi cực nhỏ trong văn bản (như thay dấu chấm, dấu phẩy,…) cũng sẽ kéo theo sự
thay đổi rõ rệt trong giá trị mã băm của nó Chính vì vậy mã băm có tính đặc trưng rấtcao, và thường được gọi là đặc trưng văn bản Để nhận biết sự toàn vẹn của một văn
bản người ta chỉ cần xem đặc trưng của nó có bị thay đổi hay không Hai thuộc tính
quan trọng khác của hàm chiết xuất là tính một chiều và tốc độ nhanh Tính một chiều
thể hiện ở chỗ không thể tạo ra được một văn bản có mã băm (đặc trưng) là một xâu sốcho trước, và do đó không thể mạo ra một “văn bản giả” có cùng đặc trưng với mộtvăn bản cho trước Tốc độ nhanh có nghĩa là thời gian tính đặc trưng cho văn bản làkhông đáng kể [3][13].
Rõ ràng, việc đặc trưng văn bản không bị thay đổi cũng đồng nghĩa với việc bảnthân văn bản không bị thay đổi Từ đây ta có một quy trình ký các văn bản dựa vào đặctrưng của nó Theo quy trình này, khi một cá thể A muốn ký một văn bản P thì cầnphải thực hiện các bước sau đây [3][13]:
Tính đặc trưng văn bản của P (bằng hàm chiết xuất có sẵn trên hệ thống). Dùng chìa khóa bí mật của mình để mã hóa dãy số đặc trưng văn bản thu được
ở bước trên Đặc trưng văn bản sau khi được mã (bằng chìa bí mật của A) thìđược gọi là chữ ký số (của ông A đối với văn bản P).
Tức là tuân theo sơ đồ sau:
Trang 10Hình 1.1: Quy trình ký điện tử [13]
Dễ dàng thấy rằng chữ ký số được tạo ra trong quy trình trên có đầy đủ các thuộctính đã nêu trong mục đầu Thời gian tạo chữ ký được giảm đi rất nhiều và gần nhưkhông phụ thuộc vào độ dài của văn bản Thật vậy, do thời gian tính đặc trưng văn bảnlà không đáng kể, thời gian tạo chữ ký chỉ còn là việc mã hóa đặc trưng của văn bản(có độ dài như nhau với mọi văn bản, và nhỏ hơn độ dài văn bản nhiều lần).
Một người nào đó, nhận được văn bản P cùng với chữ ký số đi kèm, muốn tiếnhành kiểm tra thì cần tiến hành các bước sau [3][13]:
Tính đặc trưng của văn bản P (bằng hàm chiết xuất có sẵn trên hệ thống). Giải mã chữ ký số (bằng chìa khóa công khai của ông A) để có một đặc trưng
nữa của P, rồi so sánh nó với đặc trưng thu được ở bước trên Nếu chúng khớpnhau thì chứng tỏ văn bản nhận được chính là văn bản đã được ông A ký và nộidung của nó không bị thay đổi so với khi ký.
Tức là tuân theo sơ đồ sau:
Trang 11Hình 1.2: Quy trình kiểm tra chữ số ký số [13]
Như vậy, chữ ký số không phải là một nét vẽ ngoằn ngoèo khó bắt chước (nhưchữ ký tay thông thường trên giấy) mà là một dãy số được tạo nên từ đặc trưng củavăn bản bằng phép mã hóa với chìa khóa bí mật của người ký.
So với thủ tục ký thông thường (trên văn bản giấy), thủ tục ký điện tử có nhữngưu thế vượt trội Hơn thế:
Chữ ký số là chính xác tuyệt đối (không còn mối e ngại về việc chữ ký khônggiống nhau trong mỗi lần ký, như khi phải ký bằng tay).
Trong khi việc kiểm định chữ ký viết tay, con dấu giả,… là không đơn giản (vìthường đòi hỏi phương tiện kỹ thuật đặc biệt) thì chữ ký số có thể được kiểmđịnh một cách dễ dàng và chính xác (bằng thiết bị luôn có sẵn trong chươngtrình) Mọi sự giả mạo, gian lận vì thế đều bị phát hiện tức khắc.
Như vậy, bằng việc triển khai giải pháp ký điện tử ta có thể nói lời kết thúc chocác loại văn bằng chứng chỉ giả, mở đường cho các dịch vụ giao dịch trực tuyến với độtin cậy cao Tuy nhiên, điều này chỉ có thể đạt được nếu như mỗi người sở hữu đúngcặp chìa khóa công khai và bí mật của chính mình Nếu như có một ông B nào đó cóthể đánh lừa được mọi người rằng cặp chìa khóa công khai (mà ông đang có) là củaông A, thì sẽ xảy ra hiện tượng “mạo danh” vô cùng nguy hiểm Một mặt, ông B sẽđọc được tất cả các tin mật mà người khác muốn gửi cho ông A nếu tin được mã bằngchìa khóa công khai của ông B, và mặt khác ông B có thể ký các văn bản “vô tội vạ”và đánh lừa mọi người rằng ông A đã ký những văn bản đó Tóm lại, để cho chữ ký sốcó thể phát huy được thế mạnh của mình thì trước hết cần phải có giải pháp xác định
Trang 12một cách chính xác “ai là ai” trên toàn hệ thống Một giải pháp như vậy có thể có đượcbằng việc dùng một “bên thứ ba đáng tin cậy”, một bộ máy trung thực đảm nhiệm việccấp phát cho mỗi thực thể (người, máy tính, phương tiện,…) một định danh duy nhấtvà gắn cho mỗi định danh một cặp chìa khóa (bí mật – công khai) duy nhất, để rồi vàomọi lúc, mọi nơi bất kỳ ai cũng có thể thông qua nó để kiểm định xem một chìa khóacông khai nafon đó thuộc về thực thể có định danh nào Bộ máy trung thực đó còn
được gọi là Cơ quan thẩm quyền cấp chứng thực, gọi tắt là CA (Certificate Authority).
1.2.2 Chứng thực số
Khái niệm chứng thực số [3][7][13]
Trong mật mã học, chứng thực số (còn gọi là chứng thực điện tử) là một chứngthực sử dụng chữ ký số để gắn một chìa khóa công khai với một thực thể (một cá nhân,hay một máy chủ, hoặc một công ty…) Nói cách khác, chứng thực số là phương tiệngiúp người ta khẳng định được một chìa khóa công khai nào đó thuộc về thực thể nào
Một chứng thực số chuẩn mực thường bao gồm chìa khóa công khai và một sốthông tin về thực thể sở hữu chìa khóa đó (tên, địa chỉ,…) Như vậy, thông tin trênchứng thực số không chỉ cho biết một chìa khóa công khai nào đó thuộc về ai, ta còncó thể biết được các thông tin liên quan khác, mà đôi khi cũng rất quan trọng trongmột hệ thống cụ thể, như là danh phận, chức vụ,… của người sở hữu [3].
Trong một mô hình với hạ tầng khóa công khai (PKI) chuẩn mực, chữ ký trong
chứng thực thuộc về nhà cung cấp chứng thực số (Cerfiticate Authority, viết tắt là
CA) Chữ ký trong chứng thực là sự đảm bảo của người ký về mối liên hệ giữa chìa
khóa công khai và thực thể được chứng nhận.
Nội dung của chứng thực số theo chuẩn X.509 [3][13]
Tiêu chuẩn về chứng thực số trên cơ sở hạ tầng khóa công khai phổ biến nhất
hiện nay là X.509 được ban hành bởi ITU-T (International Telegraph Union –
Telecom, tổ chức viễn thông quốc tế (về lĩnh vực viễn thông), thuộc liên hợp quốc).
Bao gồm:
Version: Chỉ định phiên bản của chứng nhận X.509.
Serial Number: Số loạt phát hành được gán bởi CA Mỗi CA nên gán một mãsố loạt duy nhất cho mỗi giấy chứng nhận mà nó phát hành.
Signature Algorithm: Thuật toán chữ ký và chỉ rõ thuật toán mã hóa được CAsử dụng để ký giấy chứng nhân Trong chứng nhận X.509 thường là sự kết hợp
Trang 13giữa thuật toán băm (chẳng hạn như MD5) và thuật toán khóa công khai (chẳnghạn như RSA).
Issuer Name: Tên tổ chức CA phát hành chứng thực Hai CA khác nhau khôngđược sử dụng cùng một tên phát hành.
Validity Period: gồm hai giá trị chỉ định khoảng thời gian mà giấy chứng nhậncó hiệu lực: not-before và not-after Not-before: thời gian chứng nhận bắt đầucó hiệu lực; Not-after: thời gian chứng nhận hết hiệu lực.
Các giá trị thời gian này được đo theo chuẩn thời gian Quốc tế, chính xác đếntừng giây.
Subject Name: Tên chủ thể được cấp chứng thực.
Public Key: Chìa khóa công khai của chủ thể được cấp chứng thực.
Issuer Unique ID & Subject Unique ID: Được đưa vào sử dụng từ X.509 phiênbản 2, dùng để xác định hai tổ chức CA hoặc hai chủ thể khi chúng có cùngDN RFC 2459 đề nghị không nên sử dụng hai trường này.
Extensions: Chứa các thông tin bổ sung cần thiết mà người thao tác CA muốnđặt vào chứng nhận (Mới được đưa ra trong X.509 phiên bản 3).
Trang 14Hình 1.3: Những nội dung thông tin cơ bản theo chuẩn X.509 [13] 1.3 Vai trò của CA và vấn đề then chốt trong thiết lập CA
1.3.1 Vai trò của CA
Chứng thực số là tiền đề cho nhiều ứng dụng của mật mã khóa công khai Đốivới các hệ mã đối xứng (bí mật), việc trao đổi chìa khóa (bí mật) giữa những người sửdụng trên quy mô rộng là vô cùng khó khăn, hầu như không thể thực hiện được Vớicác hệ mã hóa khóa công khai, người ta có thể thoát ra khỏi khó khăn này Trênnguyên tắc, nếu cá nhân A muốn người khác giử thông tin mật cho mình thì chỉ cầncông bố chìa khóa công khai của chính mình Bất kỳ ai có được chìa khóa này đều cóthể gửi thông tin mật cho A Tuy nhiên, khi ấy lại nảy sinh một vấn đề khác Thật vậy,nếu chìa khóa công khai của A không được chứng thực, một người nào đó (D) cũng cókhả năng đưa ra một chìa khóa công khai khác và giả mạo rằng đó là chìa khóa của A.Bằng cách làm như vậy kẻ “mạo danh” này có thể đọc được một số thông tin mà ngườikhác gửi cho A Nếu như chìa khóa công khai của A có trong một chứng thực số (đượcchứng thực bởi một bên thứ 3, chẳng hạn như là T, với công nghệ chữ số) thì bất kỳ aitin tưởng vào T cũng có thể kiểm tra chìa khóa công khai của A Nói cách khác, kẻmạo danh D ắt sẽ bị lật tẩy Trong mô hình hạ tầng khóa công khai thì T chính là nhàcung cấp chứng số (CA – Certificate Authority).
1.3.2 Sử dụng chứng thực số
Trang 15Khi áp dụng chứng thực số ở quy mô lớn, có rất nhiều CA cùng hoạt động Vìvậy một cá thể A có thể không quen thuộc (không đủ tin tưởng) với CA của một cá thểB khác Do đó chứng thực của B có thể phải bao gồm chữ ký của CA ở mức cao hơn.Quá trình này dẫn đén việc hình thành một mạng lưới quan hệ phức tạp và phân tầnggiữa các CA Trong tiêu chuẩn X.509 về hệ thống hạ tầng khóa công khai, mạng lướiCA tạo thành cây từ trên xuống với gốc là một CA trung tâm mà không cần đượcchứng thực bởi một bên thứ 3 nào khác.
Cũng giống như giấy CMND, một chứng thực điện tử cũng có thời hạn lưu hànhnhất định, và có thể bị thu hồi trước thời han Một chứng thực số có thể bị thu hồi nếunhư chìa khóa bí mật (cùng cặp với chìa khóa công khai của nó) đã bị lộ, hoặc mối liênhệ giữa khóa công khai và chủ thể sở hữu đã thay đổi Điều này có thể xảy ra ở mứcđộ không thường xuyên, nhưng người sử dụng phải luôn kiểm tra tính pháp lý củachứng thực số mỗi khi sử dụng Việc kiểm tra có thể thực hiện bằng cách so sánhchứng thực với danh sách các chứng thực bị thu hồi (Certificate Revocation List –CRL) Việc đảm bảo danh sách này luôn chính xác và được cập nhật kịp thời là chứcnăng cơ bản của hạ tầng khóa công khai tập trung [13]
1.3.3 Các chức năng cơ bản của CA
Hình 1.4: Các chức năng của hệ thống CA [13]
Cấp phát chứng thực [13]
Trang 16Cấp phát chứng thực là nhiệm vụ đầu tiên của một CA Công việc này được thựchiện trên cơ sở một yêu cầu được đưa ra từ phía người dùng Trong các hệ thốngkhông lớn lắm, các yêu cầu này được trực tiếp gửi cho CA để trực tiếp xử lý, còn vớicác hệ thống lớn thường có thêm một khâu trung gian (đăng ký – registration) nhậnyêu cầu từ phía người dùng chuyển cho CA và nhận chứng thực từ CA trả về chongười dùng Để tạo ra một chứng thực số, CA phải sinh được một cặp chìa khóa phiđối xứng có độ an toàn cao để gán cho chủ thể (người yêu cầu) và tuân thủ một số quyđịnh nghiêm ngặt trong việc cấp phát (ví dụ tránh để xảy ra nhầm lẫn cấp một chứngthực cho hai chủ thể khác nhau, hoặc tránh dùng hai định danh quá giống nhau có thểdẫn đến khả năng mạo danh) Thông tin ghi trong chứng thực là những thông tin cơbản nhất về chủ thể và cơ quan cấp chứng thực (như trong giấy CMND), ngoài ra cómột thông tin mang tính đặc thù cho chứng thực số (vốn không có trong CMND thôngthường) đó là chìa khóa công khai Đây chính là chìa khóa mà người khác dùng đểkiểm tra chữ ký số của chủ nhân mang chứng thực Để không thể xảy ra khả năng mạonhận chìa khóa (như đã thấy với hiện tượng mạo danh), người phát hành chứng thực(tức là CA) sẽ dùng chìa khóa bí mật của mình ký lên cụm thông tin có trong chứngthực (trong đó có tên chủ thể cùng chìa khóa công khai) Chữ ký được đặt ngay dướicụm thông tin đã được ký để người khác dể dàng kiểm tra (xem sơ đồ kèm theo).
Hình 1.5: Sơ đồ minh họa chức năng cấp phát chứng thực của CA [13]
Trang 17Kiểm tra chứng thực [13]
Để kiểm tra một chứng thực của người dùng, người ta cần phải có đượcthông tin chính xác về chìa khoá công khai của CA Tốt nhất là lấy từ trong Chứngthực số của chính CA Người ta dùng chìa khoá này để giải mã phần chữ ký số cótrong chứng thực của người dùng rồi lấy kết quả tìm được đem so với mã băm củaphần thông tin công khai trong chứng thực số (tức là phần còn lại từ chứng thực số saukhi đã bỏ đi phần chữ ký số) Sơ đồ minh họa:
Hình 1.6: Sơ đồ minh họa chức năng kiểm tra chứng thực của CA [13]
Các chứng năng còn lại của CA mang tính kỹ thuật thuần túy, ta không đề cậpđến ở đây.
1.3.4 Vấn đề then chốt trong thiết lập CA
Bước đầu tiên và cũng là quan trọng nhất của một hệ thống chứng thực số CA làcấp phát khóa Các hệ thống CA có thể sử dụng nhiều thuật toán tạo chữ ký số khác
Trang 18nhau của hệ mã phi đối xứng Trong các hệ mã phi đối xứng thì hệ mã RSA được sửdụng rộng rãi và phổ biến nhất Hệ mã RSA có độ bảo mật cao, luôn là thách thức chogiới thám mã Nước ta đã đưa ra chuẩn chữ ký số, trong đó RSA được sử dụng nhưmột hệ mã chuẩn trong một thời gian dài sắp tới Việc sinh khóa trong hệ mã RSA vềthực chất là tạo ra một cặp số lớn p,q là các số nguyên tố mạnh Để sinh được mộtcặp số nguyên tố như vậy, chúng ta phải tìm hiểu các lý thuyết toán học có liên quanđến số nguyên tố, số giả nguyên tố như: các định lý của số nguyên tố, kiểm tra sốnguyên tố và số giả nguyên tố, và cách kiểm tra số giả nguyên tố mạnh sẽ được đề cậpở chương tiếp theo.
Trang 19Chương 2 Một số công cụ toán học liên quan
2.1 Số nguyên tố và hệ mã khóa công khai RSA2.1.1 Hệ mã khóa công khai RSA
Trước khi đi vào các lý thuyết toán học có liên quan đến việc sinh, kiểm tra sốnguyên tố để làm khóa cho CA, ta tìm hiểu kỹ hơn về hệ mã RSA được ứng dụngtrong hệ thống chứng thực số
Hệ mã đối xứng và hệ mã phi đối xứng [1]
Khái niệm mã đối xứng được dùng để chỉ các hệ mã mà trong đó, khi biết khóa
lập mã, ta có thể tìm ra khóa giải mã, đồng thời, việc giải mã cùng đòi hỏi thời giannhư việc lập mã Cho đến những năm cuối của thập niêm 70 của thế kỉ 20, người tamới chỉ biết đến một loại mã như vậy Đối với các hệ mã này, cần phải giữ bí mậtkhóa lập mã, vì để lộ nó cũng tức là để lộ cách giải mã Do đó, chỉ những người hoàntoàn chia sẻ mọi thông tin mật với nhau mới có thể trao đổi với nhau bằng mật mã.Điều này giải thích nguyên nhân của việc cho đến rất gần đây mật mã thường chỉ đượcdùng trong quân sự, ngoại giao, tức là khi những đối tượng cần trao đổi thông tin mậtvới nhau là khá it, hơn nữa, lại cùng chung quyền lợi nên sẵn sàng bảo vệ bí mật chonhau trong quá trình trao đổi thông tin.
Sự phát triển của xã hội dẫn đến việc ngày nay mật mã không những chỉ đượcdùng trong bí mật quân sự và ngoại giao, mà còn dùng, và có thể chủ yếu là dùngtrong bí mật kinh tế, tài chính, thương mại Vì thế xuất hiện những đòi hỏi mới đối vớicác hệ mật mã hiện đại, khác về nguyên tắc so với mật mã thường dùng trước đây.Không giống như các hoạt động quân sự hoặc ngoại giao, trong hoạt động kinh doanh,số lượng đơn vị phải cùng trao đổi thông tin thường là rất lớn Thậm chí, những ngườicó quyền lợi cạnh tranh nhau cũng có nhu cầu trao đổi những thông tin mặt với nhau.Bởi thế, những mật mã đối xứng khó có thể thích hợp Hiển nhiên, muốn gửi mộtthông báo mật cho một đối tượng nào đó, ta cần phải biết khóa lập mã của họ, vì thế,những người cùng dùng một chìa trong hệ mã đối xứng đều biết hết bí mật của nhau.
Các hệ thống mật mã hiện đại, mật mã khóa công khai, hay còn gọi là mã phi đối
xứng, khắc phục được những nhược điểm đó: mỗi người tham gia trong hệ thống chỉ
cần giữ bí mật chìa khóa giải mã của mình (còn gọi là chìa khóa bí mật), trong khikhóa lập mã được thông báo công khai (và thường được gọi là chìa khóa công khai).
Việc biết khóa lập mã không cho phép tìm ra khóa giải mã trong một thời gian chấpnhận được, ngay cả khi sử dụng những máy tính hiện đại nhất Những hệ mã phi đốixứng tìm thấy đầu tiên là những mật mã dùng các hàm số học.
Trang 20Hệ mã RSA [1]
Trong các hệ mã phi đối xứng thì hệ mã RSA (phát minh năm 1978 bởi Rivest,
Shamir và Adleman) được sử dụng rộng rãi và phổ biến nhất Hệ mã RSA có độ bảo
mật cao, luôn là thách thức cho giới thám mã Nước ta đã đưa ra chuẩn chữ ký số,
trong đó RSA được sử dụng như một hệ mã chuẩn trong một thời gian dài sắp tới.Hệ RSA được xây dựng trên cơ sở mã mũ, trong đó khóa lập mã (công khai) làcặp (n,e), gồm số mũ e và modulo n Khóa giải mã (bí mật) là cặp (n,d) Với d
là số nghịch đảo của e modulo (n) Số n là tích của hai số nguyên tố rất lớn p,q
nào đó, np.q, còn e được chọn là số nguyên tố cùng nhau với (n), trong đó)
là giá trị hàm Euler của n Để mã hóa một thông báo, trước tiên ta chuyển nó
sang dạng số và nhóm thành các khối với độ dài lớn nhất có thể (tùy thuộc khả năngtính toán và tốc độ yêu cầu) với một số chẵn chữ số Để mã hóa một khối P trong vănbản, ta tính
khi (P,n)1 Chú ý rằng, xác suất để P và n không nguyên tố cùng nhau là hết sức
nhỏ, vì điều này chỉ có thể xảy ra khi P là bội của p hoặc q Thông thường P chỉlà những “khối văn bản” có độ dài không lớn, nói chung là nhỏ hơn hẳn p và q, chonên điều kiện (P,n)1 là luôn xảy ra, và công thức trên cho thấy việc giải mã một
khối trong văn bản mật cũng chính là việc nâng lên lũy thừa bậc d rồi rút gọn theomodulo n Cặp (n,d) được gọi là khóa giải mã.
Việc biết chìa khóa lập mã (n,e) không dẫn đến việc tìm được chìa khóa giảimã (n,d) Để có thể tìm được d thì ta phải tìm được (n) Việc tìm (n) khôngdễ hơn với việc phân tích n ra tích của hai số nguyên tố rất lớn là p và q Thật vậy,ta có:
pq pq pq nq
Trang 21Từ các công thức đó để tìm được p và q thì với khả năng của con người, thậm chí làmáy tính có tốc độ xử lý cao là không thể.
Độ an toàn của RSA [1]
Nếu ta chọn các số p và q khoảng 100 chữ số thập phân, thì n sẽ có khoảng
200 chữ số thập phân Để phân tích một số nguyên cỡ lớn như thế, với các thuật toánnhanh nhất hiện này và với những máy tính hiện đại nhất, ta mất hàng tỷ năm!
Sau khi tìm ra hệ mã, Rivesst, Shamir và Adleman có viết một bài báo công bốphát minh dưới dạng một thông báo khoa học của MIT và, trên cột Martin Gardner’scủa tờ báo Scienfitic American, họ có đưa ra lời thách thức bạn đọc bẻ khóa một mẩutin nhỏ đã được mã hóa với:
e = 9007.Mẩu tin
“first solver wins one hundred dollars”
xuất hiện trong dạng mã hóa (với A = 01, B=02, C=03 …) chỉ được giải mã vào ngày26/4/1994, bằng một cố gắng tổng lực mang tính quốc tế (qua Internet) với việc sửdụng 1600 workstations, mainframes, và supercomputers tấn công trong 8 tháng liêntục để phân tích số nêu trên ra thừa số nguyên tố.
Thực tế này cho thấy rằng thuật toán RSA là rất an toàn, vì không mấy khi cóđiều kiện để huy động một lực lượng tính toán hùng hậu như thế vào một công việcgiải mã một mẩu tin.
Có một vài điều cần chú ý khi chọn các số p và q để tránh rơi vào trường hợptích pq bị phân tích nhanh nhờ những thuật toán đặc biệt: p và q cần chọn sao cho
p và q1 không chỉ có toàn các ước nguyên tố nhỏ (có phân tích “vụn”) Ngoàira, ước chung lớn nhất (p1,q1) phải là số nhỏ, p và q phải có số chữ số trongkhai triển thập phân khác nhau không nhiều
2.1.2 Lý thuyết toán học về số nguyên tố và các vấn đề liên quan
Số nguyên tố [2]
Số nguyên tố là số nguyên lớn hơn 1, không chia hết cho số nguyên dương nào
ngoài 1 và chính nó Số nguyên lớn hơn 1 không phải là số nguyên tố được gọi là hợp
số.
Trang 22Các Định lý về số nguyên tố [2]
Mọi hợp số n đều có ước nguyên tố nhỏ hơn n.
Mọi số nguyên tố lớn hơn 1 đều phân tích được một cách duy nhất thành tích cácsố nguyên tố, trong đó các thừa số được viết với thứ tự không giảm.
Định lý số nguyên tố được Gauss phát biểu năm 1773:
Với mỗi số thực dương x cho trước, ta ký hiệu (x) là số các số nguyên tốkhông vượt quá x Khi đó, ta có: lim ( )/log 1
Có thể chứng minh được rằng khi m,n là các số nguyên tố cùng nhau thì ta có )
Phép tính đồng dư theo modulo m dẫn đến việc tách tập số nguyên ra thành m
lớp, mỗi lớp chứa các số nguyên đồng dư với nhau theo modm Tập các lớp này đượcký hiệu là /m (Z là tập các số nguyên) và chứa đúng m phần tử Mỗi lớp trong
tập /m có đúng 1 số nằm trong đoạn [0,m1], cho nên mỗi số nguyên trong đoạnnày được xem “đại diện” của một lớp.
Trang 23Một số tính chất của phép tính đồng dư:
a a(mod m);
Nếu a b(mod m) thì b a(mod m);
Nếu a b(mod m) và b c(mod m) thì a c(mod m);
Nếu a b(mod m), c d(mod m) thì acbd(mod m), a.c b.d(modm);Như vậy, ta có thể tự do thực hiện các phép tính số học thông thường trên tập /m.
Nếu x là một phần tử trong /mvà gcd(x,m)1 thì tồn tại các số u,v saocho uxvm1, tức là u.x1(modm), nên người ta nói x có nghịch đảo (trong
/m ) là u, và thường ký hiệu phần tử nghịch đảo này là x1, hay 1/x.
Định lý Fermat (bé)[2]: Nếu p là một số nguyên tố còn a là một số nguyên thì
(mod pa
Nếu a không chia hết cho p (tức là a(modp)0) thì)
; 4711(mod7)
; 14710(mod7)
Và chỉ ra rằng L(a,p) sẽ bằng 0 khi a chia hết cho p, bằng 1 khi a là một thặng
dư bình phương (mod p) và bằng -1 trong trường hợp còn lại.
Có thể mở rộng khái niệm ký hiệu trên ra cho trường hợp p không phải lànguyên tố, nhưng chỉ xét những số a trong tập thặng dư rút gọn của p (tức là những
thặng dư nguyên tố cùng nhau với p).
Ký hiệu Jacobi [1]
Với số nguyên n p1.p2 pk, trong đó pi, i 1, ,k, là các số nguyên tố, còn
a nằm trong tập thặng dư rút gọn của n, ta ký hiệu
),( ),(),
Trang 242.2.1 Thuật toán kiểm tra số nguyên tố thông thường và khái niệm số giả nguyên tố
Thuật toán: Sàng Eratosthenes [2]
Để kiểm tra n có phải là số nguyên tố hay không, ta thực hiện phép chia cho tất
cả các số nguyên tố không vượt quá n.
Độ phức tạp: Theo định lý số nguyên tố của Gauss, số các số nguyên tố không vượt
quá n là vào khoảng lognn log2 nn Để chia n cho m, ta cần O(log2nlog2 m)
phép tính bít Như vậy, nếu n vào cỡ khoảng 100 chữ số thập phân, số các phép tính
bit phải dùng sẽ vào cỡ 1050 Với những máy tính thực hiện một triệu phép tính mộtgiây, thời gian cần thiết sẽ vào khoảng 3,1.1036 năm! Điều này dẫn đến một phương
án khác thay thế: số giả nguyên tố.
Số giả nguyên tố [2]
Theo định lý Fermat, nếu n là số nguyên tố và b là số nguyên tùy ý, thì)
(mod nb
, thì n được gọi là số giả nguyên tố cơ sở b.
Nói chung các số giả nguyên tố ít hơn nhiều so với các số nguyên tố Chẳng hạn,
có tất cả 455052512 số nguyên tố bé hơn 1010, nhưng chỉ có 14884 số giả nguyên tốcơ sở 2 trong khoảng đó Sự kiện này giải thích cách nói ở trên: Các số thỏa mãn địnhlý Fermat bé có nhiều khả năng là số nguyên tố
2.2.2 Kiểm tra số giả nguyên tố mạnh
Kiểm tra Miller [2]
Giả sử n là số nguyên dương lẻ, n1 2st, trong đó s là số nguyên không âm,
t là số nguyên dương lẻ Ta nói n trải qua được kiểm tra Miller cơ sở b , nếu)
Trang 25Nếu n là một hợp số dương lẻ thì tồn tại không quá
b, 1bn1, saocho n trải qua được kiểm tra Miller đối với các cơ sở đó.
Từ định lý trên suy ra rằng, nếu số b được chọn ngẫu nhiên trong khoảng1
1bn thì n trải qua kiểm tra Miller cơ sở b với xác suất bé hơn
Như vậy,nếu ta chọn k số ngẫu nhiên thì xác suất để n trải qua kiểm tra Miller đối với k cơsở đó sẽ bé hơn k
Khi k đủ lớn, với dụ k 20, xác suất đó quá nhỏ, nên với n
trải qua 20 cơ sở ngẫu nhiên thì có thể tin “gần chắc chắn” rằng n là số nguyên tố Từ
đó ta có thuật toán xác suất sau:
Thuật toán Miller-Rabin [9], [11]
RGB là bộ sinh bít ngẫu nhiênInput:
1 w The odd integer to be tested for primality This will be
either p or q, or one of the auxiliary primes p1,p2,q1
or q2.
2 iterations The number of iterations of the test to be performed; the
value shall be consistent with Table 3 or 4.Output:
1 status The status returned from the validation procedure, where
status is either PROBABLY PRIME or COMPOSITE.Process:
1 Let a be the largest integer such that 2a divides w1.2 m( w 1)/2a.
3 wlen len(w).
4 For i 1 to iterations do
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1bw1.4.2 If ((b1)or(bw1)), then go to step 4.1.
4.3 zbmmodw.
4.4 If ((z1)or(z w1)), then go to step 4.7.4.5 For j 1 to a1 do
4.5.1 zz2modw.
4.5.2 If (z w1), then go to step 4.7.4.5.3 If ( z 1), then go to step 4.6.
Trang 26Mã code cụ thể của thuật toán này xem ở phần phụ lục.
Thuật toán Miller-Rabin nâng cao [9]: cung cấp thêm thông tin chi tiết khi gặp một
lỗi, có thể hữu dụng khi sinh và xác thực số nguyên tố trong mã hóa khóa công khaiRSA.
RGB là bộ sinh bít ngẫu nhiênInput:
1 w The odd integer to be tested for primality This will be
either p or q, or one of the auxiliary primes p1,p2,q1
or q2.
2 iterations The number of iterations of the test to be performed; the
value shall be consistent with Table 3 or 4.Output:
1 status The status returned from the validation procedure, where
status is either PROBABLY PRIME, PROVABLY COMPOSITE WITH FACTOR (returned with the factor), and PROVABLY COMPOSITE AND NOT A POWER OF A PRIME.
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1bw1.4.2 If ((b1)or(bw1)), then go to step 4.1.
4.7.1 x z. Comment: x1 and x w4.7.2 zx2modw
4.7.3 If (z w1), then go to step 4.15.4.7.4 If ( z 1), then go to step 4.12.