1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN mới NHẤT) SKKN sử dụng công cụ véc tơ để phát triễn một số bài toán mới từ một số bài toán cơ bản trong sách hình học 10

19 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 3,48 MB

Nội dung

I MỞ ĐẦU 1.1 Lý chọn đề tài Trong q trình dạy học trường phổ thơng tơi nhận thấy học sinh e ngại học mơn hình học em nghĩ trừu tượng, thiếu tính thực tế khách quan Chính mà có nhiều học sinh học yếu môn học Việc sáng tạo toán từ toán có sách giáo khoa nhằm mục đích khuyến khích tìm tịi, tư duy, sáng tạo cho học sinh, tạo cho em say mê mơn hình học, phát triển khả tự phát vấn đề giải vấn đề, từ nâng cao chất lượng dạy học Đây mục tiêu quan mà giáo dục hướng tới Qua năm giảng dạy môn học đúc kết số kinh nghiệm vấn đề nhằm giúp em tiếp thu kiến thức tốt hơn, từ mà chất lượng giảng dạy học tập học sinh, đặc biệt công tác bồi dưỡng học sinh giỏi Vì tơi chọn đề tài: “ Sử dụng công cụ vectơ để phát triển số toán từ số toán sách hình học 10 " 1.2 Mục đích nghiên cứu Trong phạm vi đề tài tơi khơng có tham vọng đưa hệ thống kiến thức hoàn toàn mới, kết mặt toán học; tơi trình bày kết mà q trình dạy học hinh học 10 tơi tích luỹ, tìm tịi; nhằm hướng tới mục đích giúp em học sinh nắm vững kiến thức Trên sở từ số toán điển hình tơi đưa phương pháp giải cho tốn nhóm tốn tương tự; đồng thời giúp học sinh khái quát hóa để tốn , qua giúp rèn luyện, phát triển tư giải tốn hình học cho học sinh 1.3 Đối tượng nghiên cứu Đề tài nghiên cứu học sinh lớp 10A2 10A3 trường THPT Lê Hồn - Thọ Xn - Thanh Hố Trong trình giảng dạy thân định hướng, dẫn dắt học sinh phát triển số toán từ số định lý toán Việc phát triển số tốn theo chiều hướng mở rộng sang không gian thay đổi giả thuyết toán 1.4 Phương pháp nghiên cứu - Phương pháp nghiên cứu lý luận: +Thông qua việc nghiên cứu loại tài liệu sư phạm, chun mơn có liên quan đến đề tài + Nghiên cứu chương trình sách giáo khoa tốn 10 11, mục đích u cầu dạy hình học trường phổ thông - Phương pháp đàm thoại lấy ý kiến học sinh giáo viên có nhiều kinh nghiệm công tác bồi dưỡng học sinh giỏi 1.5 Những điểm sáng kiến kinh nghiệm Trang download by : skknchat@gmail.com II NỘI DUNG 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.1.1 Định nghĩa vectơ a Các định nghĩa - Định nghĩa 2.1.1.1: Vectơ đoạn thẳng định hướng, nghĩa hai điểm mút đoạn thẳng chĩ rõ điểm điểm đầu, điểm điểm cuối - Định nghĩa 2.1.1.2: Hai vectơ hướng có độ dài chúng - Định nghĩa 2.1.1.3: Hai vectơ đối hướng có độ dài chúng ngược b Các ký hiệu thường dùng - Ký hiệu AB độ dài đoạn thẳng AB - Ký hiệu - Ký hiệu - Ký hiệu vectơ AB độ dài vectơ Như độ dài đại số vectơ AB 2.1.2 Các phép toán vectơ a Phép cộng vectơ - Quy tắc ba điểm: Với điểm A, B, C thì: - Quy tắc hình bình hành: - Tính chất trung điểm: Với I trung điểm đoạn thẳng AB thì: + + , với điểm M b Phép trừ vectơ Với ba điểm O, A, B thì: c Phép nhân vectơ với số - Cho vectơ + số k   Vectơ hướng với vectơ xác định bởi: k  ngược hướng với vectơ k < + Trang download by : skknchat@gmail.com - Cho k cho: phương với Khi đó, tồn số thực - Ba điểm phân biệt A, B, C thẳng hàng vectơ phương d Tích vơ hướng hai vectơ - Cho trước hai vectơ Từ điểm O cố định, dựng vectơ Khi góc góc hai vectơ Ký hiệu: - Tích vơ hướng hai vectơ: - - 2.1.3 Khai triển vectơ theo vectơ không phương a Khai triển vectơ qua hai vectơ không phương mặt phẳng Định lý Cho hai vectơ khơng phương Khi vectơ biểu thị cách qua hai vectơ , nghĩa có cặp số m n cho b Khai triển vectơ qua ba vectơ không đồng phẳng không gian Định lý Cho ba vectơ không đồng phẳng , Khi vectơ biểu thị cách qua ba vectơ , , nghĩa có số m, n p cho 2.1.4 Phép biến hình mặt phẳng a Định nghĩa phép biến hình Quy tắc đặt tương ứng điểm M mặt phẳng với điểm xác định M’ mặt phẳng gọi phép biến hình mặt phẳng b Một số phép biến hình mặt phẳng liên quan đến vectơ * Phép tịnh tiến Định nghĩa 1: Trong mặt phẳng cho vectơ , phép biến hình biến điểm M thành điểm M’ cho = , gọi phép tịnh tiến theo vectơ Kí hiệu: Vậy: (M) = M’ = * Phép vị tự Trang download by : skknchat@gmail.com Định nghĩa 2: Trong mặt phẳng cho điểm O số k 0, phép biến hình biến điểm M thành điểm M’ cho , gọi phép vị tự tâm O tỉ số k Kí hiệu: Vậy: 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Khi dạy hình học lớp 10 ta nhận thấy số toán chứng minh sở cơng cụ vectơ Sau sách giáo khoa đưa số tập mang tính chất vận dụng Bản thân tơi thấy dừng lại làm cho học sinh chưa thật hứng thú với mơn hình học, chưa khai thác khả phát vấn đề giải vấn đề, đặc biệt với em học sinh giỏi 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đề Trong q trình tìm tịi, nghiên cứu, giảng dạy bồi dưỡng học sinh giỏi, tổng hợp lựa chọn số tốn bản, giải cơng cụ vectơ Trên sở tơi hướng dẫn học sinh tìm tịi, phát triển thêm số tốn đồng thời giải tốn cơng cụ vectơ Bài toán (Bài toán trọng tâm) Bài toán sở: Cho tam giác ABC , ta ln có: a Một điểm G cho b Ba đường trung tuyến đồng quy điểm G, điểm G chia đường trung tuyến theo tỉ số -2 Mở rộng toán từ tam giác sang tứ diện ta có số tốn : Bài tốn 1.1 Cho tứ diện ABCD ta ln có : a Một điểm G cho b Ba đường trung bình đồng quy điểm G , điểm G chia đường trung bình theo tỉ số -1 c Bốn đường trọng tuyến đồng quy G, điểm G chia đường theo tỉ số -3 Bài tốn 1.2 Trong khơng gian (hoặc mặt phẳng ) cho hệ n điểm A1, A2 , … , An , ta ln có: a Một điểm G cho b.Tất đường trung tuyến bậc k ( k = 0, 1, …, n - 1) đồng quy điểm G (mỗi đường trung tuyến bậc k đoạn thẳng nối trọng tâm hệ k điểm n điểm cho với trọng tâm hệ n - k điểm lại) c Điểm G chia đường trung tuyến bậc k theo tỉ số Trang download by : skknchat@gmail.com Bình luận : Cả ba tốn tương tự nhau, có mở rộng dần không gian mở rộng dần khái niệm, tính chất; Các tốn có hướng giải sách giáo khoa , nhiên cách giải công cụ véc tơ giải ba tốn Bài giải a Lấy điểm O cố định Điểm G thoả mãn    (là 1vectơ không đổi ), O cố định nên đẳng thức  điểm G xác định b) , c) Lấy k điểm X1 , X2 , … ,Xk từ họ điểm cho gọi trọng tâm hệ G1 trọng tâm hệ n - k điểm Xk + , Xk + , … , Xn lại G'1 , ta có : (1) (2)  Từ (1) ta có (1') Từ (2) ta có (2') Cộng (1') (2') sử dụng , ta   điểm G, G'1,G1 thẳng hàng đồng thời G chia G1G'1 (trung tuyến bậc k) theo tỉ số (k-n)/k Vậy b), c) chứng minh Nhận xét 1.1 Từ tốn trọng tâm tam giác, nhìn nhận góc độ diện tích ta có Do G trọng tâm tam giác, theo quan điểm diện tích ta có: Khi đó: Từ ta đưa toán tổng quát: Bài toán 1.3 Cho tam giác ABC M điểm thuộc miền tam giác Gọi S1, S2, S3 diện tích tam giác MBC, MCA, MAB Chứng minh: Bài giải Gọi S diện tích tam giác ABC, từ M ta dựng hai đường thẳng song song với AB AC, cắt AB B’ AC C’ Biểu thức cần chứng minh biến đổi dạng Ta có: Trang download by : skknchat@gmail.com (*) Dễ chứng minh Suy điều phải chứng minh (*) Nhận xét 1.2 Từ toán ta thay giả thiết Hình thu 3.1 số toán sau: Bài toán 1.4 Cho O điểm nằm tam giác ABC thuộc miền góc tạo hai tia CA,CB Gọi S1, S2, S3 diện tích tam giác OBC, OCA, OAB Chứng minh Sau giải toán giáo viên yêu cầu học sinh tự đề xuất toán tương tự cho điểm M nằm tam giác miển hai góc cịn lại Nhận xét 1.3 Từ tốn ta chọn M điểm đặc biệt tam giác ABC ta có số tốn sau Bài toán 1.5 Gọi I tâm đường tròn nội tiếp tam giác ABC Chứng minh ( Bài 37 sách tập HH10 nâng cao) Bài toán 1.6 Gọi O tâm đường tròn ngoại tiếp tam giác nhọn ABC Chứng minh: a b c Bài giải a Nếu tam giác ABC nhọn M trùng với tâm O đường trịn ngoại tiếp ABC M thuộc miền ABC Tương tự: sin BOC = sin2A Do ta có: b Từ đẳng thức a ta có: Trang download by : skknchat@gmail.com Bài tốn 1.7 Cho tam giác ABC có ba góc nhọn Gọi H trực tâm tam giác ABC Chứng minh: a b Nhận xét : Cho M điểm nằm ABC khơng có góc 1200 ln nhìn cạnh tam giác góc 1200 ta có tốn Bài tốn 1.8 Gọi M điểm nằm tam giác cho M ln nhìn đoạn AB,BC, CA góc 1200 Chứng minh: Bình luận: điểm M nói giao đường tròn ngoại tiếp tam giác có cạnh AB,BC,CA dựng phía ngồi tam giác Bài tốn Bài tốn tâm đường trịn nội tiếp tam giác Bài tốn sở: Gọi I tâm đường tròn nội tiếp tam giác ABC với BC=a, AC=b, AB=c Ta có: ( Phần chứng minh chứng minh sách tập hình học 10) Nhận xét 2.1 Xuất phát từ đẳng thức , ta nhìn cạnh góc độ chiều cao ta có tốn sau Thay ta có Hoặc từ Trang download by : skknchat@gmail.com Bài toán 2.1 Cho tam giác ABC với cạnh BC= a, CA=b,AB=c Gọi I tâm đường tròn nội tiếp tam giác ABC Gọi chiều cao tam giác ABC kẻ từ đỉnh A, B ,C Chứng minh Bài toán 2.2 Cho tam giác ABC với cạnh BC= a, CA=b,AB=c Gọi I tâm đường tròn nội tiếp tam giác ABC Gọi chiều cao tam giác ABC kẻ từ đỉnh A, B ,C Chứng minh Nhận xét 2.2 Ta liên hệ cạnh với định lý hàm số sin ABC ta có: Bài tốn 2.3 Cho tam giác ABC với cạnh BC = a, CA = b,AB = c Gọi I tâm đường tròn nội tiếp tam giác ABC Chứng minh rằng: Nhận xét 2.3 Bài toán ban đầu mở rộng không gian xét cho tứ diện diện tích tam giác cần chứng minh chuyển thành thể tích tứ diện Bài toán 2.4 Cho tứ diện ABCD, O điểm thuộc miền tứ diện Gọi V1, V2, V3, V4 thể tích tứ diện OBCD, OCDA, OABD OABC Chứng minh: (1) Bài giải Tương tự toán mặt phẳng ta có(1) (Với V thể tích tứ diện)Từ ta dựng hình hộp nhận AO làm đường chéo ba cạnh kề nằm ba cạnh tứ diện xuất phát từ A Ta có Trong Tương tự : nên ta có điều phải chứng minh Nhận xét 2.4 : Từ đẳng thức hai vế sau , Nếu ta bình phương vơ hướng Hình 3.2 biến đổi ta kiến tạo số tốn Ta có: Vì Trang download by : skknchat@gmail.com Từ ta có: Do ta có tốn mới: Bài tốn 2.5 Cho tam giác ABC với cạnh BC=a, CA=b, AB=c Gọi I tâm đường tròn nội tiếp tam giác Chứng minh rằng: Nhận xét 2.5: Nếu thay tâm I điểm M nằm tam giác ta có Do ta có tốn mới: Bài tốn 2.6 Cho tam giác ABC có ba góc nhọn với BC=a,CA=b, AB=c Tìm điểm M cho biểu thức P = đạt giá trị nhỏ Nhận xét 2.6 Từ đẳng thức tâm đường tròn nội tiếp tam giác ta xây dựng cơng thức tính khoảng cách điểm đặc biệt tam giác theo độ dài cạnh a, b, c yếu tố khác + Tính OJ với O, J tâm đường trịn ngoại tiếp, nội tiếp tam giác Ta có: Từ đẳng thức Bình phương hai vế sử dụng phép biến đổi ta có: + Tính khoảng cách JH với H, J trực tâm, tâm đường tròn nội tiếp tam giác Trang download by : skknchat@gmail.com Ta có: Bình phương vơ hướng hai vế, sau biến đổi ta thu đẳng thức: Trong độ dài đoạn HA,HB,HC tính sau: Thay vào hệ thức ta có: Nhận xét: Ta có , ta có: + Tính JG với G, J trọng tâm , tâm đường tròn nội tiếp tam giác Nhận xét: Trong tam giác ta có bất đẳng thức ta có sử dụng BĐT +Tính OG Tính + Các đoạn OH, HG tính theo OG đẳng thức Bài toán Bài toán đường cao tam giác vng Bài tốn sở : Cho tam giác ABC vuông A, đường cao AH Gọi I trung điểm AH Chứng minh (1) Bài giải Ta có: A N Khi (1) M Dựng hình bình hành AMIN (hình vẽ), ta có: Với Mà B H Trang 10 download by : skknchat@gmail.com C Hoàn toàn tương tự ta có: Suy điều phải chứng minh Mở rộng tốn sang khơng gian ta có Bài tốn 3.1 Cho tứ diện OABC có cạnh OA,OB,OC đơi vng góc Gọi S0 , SA, SB ,SC diện tích mặt tứ diện đối diện với đỉnh tương ứng O,A, B, C Gọi I trung điểm đường cao OH tứ diện Chứng minh O (1) Bài giải Nhận xét: Ta có: Từ (1) I A H M Ta chứng minh (2) nhờ sử dụng toán phẳng sau: Đặt OA = a, OB = b, OC = c, OM = m, AM = x B Áp dụng tốn phẳng cho tam giác OAM vng O có đường cao OH: Áp dụng tốn phẳng cho tam giác OBC vng O có đường cao OM: Do ta có Ta có điều phải chứng minh Bài toán Bài toán đường thẳng Euler tam giác Bài toán sở Chứng minh tam giác ABC bất kì, trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp O thẳng hàng ( Bài tốn SGK Hình học 10 nâng cao trang 21) Trang 11 download by : skknchat@gmail.com C Nhận xét: Bài toán chứng minh dựa vào kiến thức lớp 10 Tuy nhiên để phát triển tư làm tiền đề cho tốn tơi trình bày lời giải thơng qua phép vị tự lớp 11 Chứng minh hệ thức GH=2GO ta dùng phép vị tự tâm G biến điểm O thành điểm H ngược lại Dựa vào hình vẽ ta đốn tỉ số vị tự -2 - Bài giải Gọi M, N, P trung điểm cạnh BC,CA,AB A H Ta có: P Do B N G O M Hình 3.9 Phép vị tự bảo tồn tính vng góc nên biến trực tâm tam giác ABC thành trực tâm tam giác MNP Theo giả thiết H trực tâm tam giác ABC O trực tâm tam giác MNP, Từ H,G,O thẳng hàng GH=2GO Mở rộng toán sang khơng gian ta có tốn Bài tốn 4.1 Chứng minh rằng, với tứ diện trực tâm ABCD ta ln có trọng tâm G, trực tâm H , tâm O mặt cầu ngoại tiếp tứ diện thẳng hàng GH = GO Bài giải Để chứng minh GH = GO ta nghĩ đến phép vị tự tâm G tỉ số -1 Lần lượt lấy A′ đối xứng với A, B′ đối xứng với B, C′ đối xứng với C, D′ đối xứng với D qua G Ta dễ thấy //=AB (tính chất phép vị tự) đường trung bình EF (E,F thứ tự trung điểm CD AB) qua G Trong hình bình hành A'B'AB  E trung điểm A'B'   A'CB'D hình bình hành Mặt khác tứ diện trực tâm ABCD có hai cạnh đối diện vng góc với nên AB  CD  A'B'  CD   A'CB'D hình thoi  A'C = A'D' Chứng minh tương tự ta có A'C = A'B  A’ cách B, C,Hình D 3.10 Từ giả thiết ta có O cách B,C,D nên A'O trục đường tròn ngoại tiếp BCD  A'O  (BCD)  A'O  (B'C'D') (1) Trang 12 download by : skknchat@gmail.com C Tương tự (1), ta có B'O  (A'C'D') (2); C'O  (B'A'D') (3)  O trực tâm tứ diện A'B'C'D' Xét phép vị tự , ta có: Như vậy, nên phép vị tự biến trực tâm tứ diện ABCD thành trực tâm O tứ diện A’B’C’D’ Suy ra:  H, G, O thẳng hàng GO = GH hay Bài toán Bài toán qua điểm cố định Bài tốn sở: Trên cạnh góc xOy có điểm M , N thay đổi cho , a , b độ dài cho trước Chứng minh M N qua điểm cố định Bài giải Trên tia Ox , Oy đặt đoạn OA = a , OB = b ; gọi E trung điểm AB F giao điểm OE với MN , ta có O  A E B Mà F , M , N thẳng hàng nên ta có : với k+l=1 N M   F x y Hình 3.20  OF = OE  F điểm thứ tư hình bình hành OAFB ) Vậy MN qua điểm cố định F Bài toán 5.1 Hai điểm M, N thứ tự thay đổi nửa đường thẳng chéo Ax, By cho (a, b độ dài cho trước) Chứng minh MN cắt đường thẳng cố định M x  A x' M' a A' I B Trang 13 b B' download by : skknchat@gmail.com Hình 3.21 N y Bài giải Dựng tia Bx' // Ax , lấy M' Bx' cho MM'//AB Trên Bx' , By đặt đoạn BA' = a , BB' = b Từ giả thiết  Theo kết ta có M'N qua điểm cố định I (đỉnh thứ tư hình bình hành BA'IB') Xét đường thẳng  qua I // MM' (//AB) , dễ thấy  đường thẳng cố định ln cắt MN Bài toán 5.2 Trên tia Ox , Oy , Oz tương ứng có điểm M , N , P thay đổi cho ln có , a , b , c độ dài cho trước Chứng minh mp (MNP) qua điểm cố định O Chứng minh : Cách chứng minh tương tự C G A P B z F M N x Hình 3.22 y Bài tốn 6: Cơng thức tính độ dài đoạn trung tuyến Bài tốn sở: Cho tam giác ABC với AB=c, BC= a, AC=b trung tuyến AM Khi (Bài tập trang 58 SGK Nâng cao) Bài giải Ta có: A Khi : B M Hình 3.30 Suy Trang 14 download by : skknchat@gmail.com C Nhận xét 6.1 Từ tốn tính độ dài trung tuyến tam giác mặt phẳng, mở rộng sang không gian ta thu toán mới: Bài toán 6.1 Cho tứ diện ABCD Gọi ma độ dài đoạn trọng tuyến nối từ đỉnh A đến trọng tâm A1 BCD Tính độ dài ma theo (i = ) (a1 = AB; a2 = AC; a3 = AD; a4 = BC; a5 =BD; a6 = CD) Đáp số: m2a = (a21+ a22+ a23) - (a24+ a25+ a26) Nhận xét 6.2 Lấy M điểm đoạn BC ta có tốn mới: Bài tốn 6.2 (định lý Stewart) Cho tam giác ABC với độ dài cạnh AB=c, BC= a, AC= b Gọi D điểm cạnh BC , BD= a1, CD= a2 Chứng minh rằng: Đặc biệt hoá: + Nếu D chân đường trung tuyến kẻ từ A xuống cạnh BC ta có cơng thức trung tuyến + Nếu D chân đường phân giác góc A, tức D chia đoạn BC theo tỉ số Khi ta có cơng thức tính độ dài đường phân giác: hay Từ toán tiếp tục mở rộng sang khơng gian ta có tốn Bài tốn 6.3 Cho tứ diện ABCD Gọi N, M điểm nằm cạnh CD, BN cho Tính AM theo k, l cạnh tứ A diện D B M Đáp sô: N C Bài toán Bài toán hai trung tuyến vng góc Bài tốn sở: Cho tam giác ABC Chứng minh điều kiện cần đủ để hai trung tuyến kẻ từ B C vng góc với là: (Bài tập trang 70 SGK Hình học 10- Nâng cao) Trang 15 download by : skknchat@gmail.com Bài giải Gọi G trọng tâm tam giác ABC Hai trung tuyến kẻ từ B C vng góc với vuông G A G B C Nhận xét 7.1 Từ toán ta thay đổi giả thuyết ta có số tốn sau: Bài tốn 7.1 Cho tam giác ABC Chứng minh điều kiện cần đủ để hai trung tuyến kẻ từ B C vng góc với Bài tốn 7.2 Cho tam giác ABC nội tiếp đường tròn giác CMR H trực tâm tam Bài tốn 7.3 Cho tam giác ABC có hai trung tuyến kẻ từ B C vng góc với Chứng minh Bài toán 7.4 Cho tam giác ABC có hai trung tuyến kẻ từ B C vng góc với Chứng minh Bài tốn 7.5 Cho tam giác ABC có Gọi R, r bán kính đường trịn ngoại tiếp, nội tiếp tam giác ABC Chứng minh Nhận xét 7.2 Từ toán điều kiện cần đủ để hai trung tuyến kẻ từ B C vuông góc với là: , ta mở rộng cho toán tứ giác, tứ diện Bài toán 7.6 Cho tứ giác OABC có trọng tâm G, OA=x, OB=y, OC=z, BC=a,CA=b,AB=c Chứng minh điều kiện cần đủ để Bài tốn 7.7 Cho tứ diện OABC có trọng tâm G, OA=x, OB=y, OC=z, BC=a,CA=b, AB=c Chứng minh điều kiện cần đủ để Bài giải (Bài toán 7.6) Trước hết ta chứng minh Trang 16 download by : skknchat@gmail.com Gọi G1 trọng tâm tam giác ABC Vì G trọng tâm tứ giác OABC nên Mà (1) Tương tự ta có: O N G C A G1 Từ (1) (2) suy B M Chứng minh tương tự ta có: Mặt khác 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Đề tài giải vấn đề sau: Đề tài số tốn bản, giải phương pháp vectơ Trên sở xây dựng số toán tương ứng Xây dựng cách giải đưa đáp số cho toán Đề tài áp dụng tiết luyện tập, tiết tự chọn lớp đặc biệt buổi dạy bồi dưỡng học sinh giỏi Thơng qua việc xuất phát từ tốn bản, giáo viên gợi ý, dẫn dắt học sinh tổng quát toán, tạo toán mới, hình thành cho em khả làm việc độc lập, phát triển tư sáng tạo, phát vấn đề giải vấn đề Phát huy tối đa tính tích cực học sinh theo tinh thần đổi Bộ Giáo dục Đào tạo Từ tạo cho em niềm tin, hứng thú học tập mơn Tốn Trang 17 download by : skknchat@gmail.com Đề tài kiểm nghiệm năm học giảng dạy lớp 10 số buổi dạy bồi dưỡng học sinh giỏi, học sinh nhiệt tình tham gia nâng cao chất lượng dạy học Các em hứng thú học tập hơn, lớp có hướng dẫn phương pháp em học sinh với mức học trung bình trở lên có để giải số tập khó Học sinh biết áp dụng tăng rõ rệt Cụ thể lớp sau áp dụng sáng kiến vào giảng dạy, đánh giá qua kiểm tra thu kết sau : Năm học Lớp Tổng số HS 10A4 (Ban 41 2018 bản) 10A2 (Ban 2019 44 nâng cao) Điểm trở lên Điểm từ đến Điểm Số Số Số Tỷ lệ Tỷ lệ Tỷ lệ lượng lượng lượng 17,1 % 22 53,6 % 12 29,3 % 31 70,4% 18,2% 11,4 % III PHẦN KẾT LUẬN VÀ KIẾN NGHỊ Sáng kiến kinh nghiệm kết q trình tìm tịi, nghiên cứu đúc rút kinh nghiệm trình giảng dạy, bồi dưỡng học sinh giỏi Qua năm triển khai thực đề tài với cách xây dựng phát triển tốn, xây dựng quy trình giải tốn cách "tự nhiên” vậy, tơi nhận thấy em nắm vấn đề, biết vận dụng kết vào giải tốn cách linh hoạt, sáng tạo Từ giúp cho em u thích mơn tốn hơn, chất lượng học nâng cao rõ rệt Trong năm học tới, tiếp tục nghiên cứu bổ sung để đề tài hoàn thiện hơn, đáp ứng nhu cầu bồi dưỡng cho học sinh giỏi để em đạt kết cao kỳ thi chọn học sinh giỏi kỳ thi tốt nghiệp trung học phổ thơng sau Trong q trình biên soạn đề tài tơi có nhiều cố gắng, nhiên khơng tránh khỏi thiếu sót.Tơi mong thầy cô giáo, bạn đồng nghiệp góp ý, bổ sung để đề tài hồn thiện Hy vọng tài liệu sử dụng làm tài liệu tham khảo cho học sinh thầy giáo q trình học tập, giảng dạy Xin chân thành cảm ơn! XÁC NHẬN CỦA HIỆU TRƯỞNG Thanh Hóa, ngày 20 tháng năm 2019 Tơi xin cam đoan SKKN viết, khơng chép nội dung người khác Trịnh Công Hải Trang 18 download by : skknchat@gmail.com TÀI LIỆU THAM KHẢO Văn Như Cương (Chủ biên), Phạm Khắc Ban, Tạ Mân (2007), Bài tập hình học 11 nâng cao , NXB Giáo dục, Hà Nội Văn Như Cương (Chủ biên), Phạm Vũ Khuê, Trần Hữu Nam (2007), Bài tập hình học 10 nâng cao , NXB Giáo dục, Hà Nội Nguyễn Văn Dũng (2015), Xác định luyện tập cho học sinh số phương thức phát triển kiến thức sách giáo khoa hình học 10 , luận văn thạc sĩ khoa học giáo dục, Trường ĐH Vinh, Nghệ An Trần Văn Hạo (Tổng chủ biên)- Nguyễn Mộng Hy (2007), Hình học 10 , NXB giáo dục Trần Văn Hạo (Tổng chủ biên)- Nguyễn Mộng Hy (2007), Hình học 11 , NXB giáo dục B.I.Acgunơp- M.B.Ban (1977), Hình học sơ cấp , NXB Giáo Dục Trang 19 download by : skknchat@gmail.com ... bồi dưỡng học sinh giỏi, tổng hợp lựa chọn số toán bản, giải cơng cụ vectơ Trên sở tơi hướng dẫn học sinh tìm tịi, phát triển thêm số toán đồng thời giải tốn cơng cụ vectơ Bài tốn (Bài toán trọng... dạy hình học lớp 10 ta nhận thấy số toán chứng minh sở cơng cụ vectơ Sau sách giáo khoa đưa số tập mang tính chất vận dụng Bản thân thấy dừng lại làm cho học sinh chưa thật hứng thú với mơn hình. .. Bài tốn SGK Hình học 10 nâng cao trang 21) Trang 11 download by : skknchat@gmail.com C Nhận xét: Bài toán chứng minh dựa vào kiến thức lớp 10 Tuy nhiên để phát triển tư làm tiền đề cho toán tơi

Ngày đăng: 29/03/2022, 22:11

TỪ KHÓA LIÊN QUAN

w