(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu(Luận văn thạc sĩ) Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu
BỘ GIÁO DỤC VIỆN HÀN LÂM VÀ ĐÀO TẠO KHOA HỌC VÀ CÔNG NGHỆ VN PHẠM VĂN DƯƠNG HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ Phạm Văn Dương NGHIÊN CỨU BÀI TỐN BĨC TÁCH THƠNG TIN HỆ THỐNG THƠNG TIN TRONG CHỨNG MINH THƯ SỬ DỤNG HỌC SÂU LUẬN VĂN THẠC SĨ NGÀNH MÁY TÍNH 2021 Hà Nội – 2021 BỘ GIÁO DỤC VIỆN HÀN LÂM VÀ ĐÀO TẠO KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ Phạm Văn Dương NGHIÊN CỨU BÀI TỐN BĨC TÁCH THƠNG TIN TRONG CHỨNG MINH THƯ SỬ DỤNG HỌC SÂU Chuyên ngành : Hệ thống thông tin Mã số: 8480104 LUẬN VĂN THẠC SĨ NGÀNH MÁY TÍNH NGƯỜI HƯỚNG DẪN KHOA HỌC : PGS.TS NGÔ QUỐC TẠO Hà Nội – 2021 LỜI CAM ĐOAN Tôi Phạm Văn Dương, học viên khóa 2019B, ngành Máy tính, chuyên ngành Hệ thống thông tin Tôi xin cam đoan luận văn “Nghiên cứu tốn bóc tách thơng tin chứng minh thư sử dụng học sâu” tơi nghiên cứu, tìm hiểu phát triển hướng dẫn PGS.TS Ngô Quốc Tạo, chép từ tài liệu, cơng trình nghiên cứu người khác mà không ghi rõ tài liệu tham khảo Tôi xin chịu trách nhiệm lời cam đoan Hà Nội, ngày tháng năm 2021 Tác giả Phạm Văn Dương LỜI CẢM ƠN Lời cảm ơn trân trọng Tôi muốn dành tới thầy cô Học viện khoa học công nghệ Việt Nam, Viện công nghệ thông tin, Viện Hàn lâm khoa học cơng nghệ Việt Nam nói chung thầy cô môn Hệ thống thông tin khoa Cơng nghệ thơng tin nói riêng tận tình giảng dạy truyền đạt kiến thức quý báu suốt khố cao học vừa qua, giúp tơi có kiến thức chuyên môn tảng để làm sở lý luận khoa học cho luận văn Đặc biệt Tôi xin chân thành cảm ơn thầy PGS.TS Ngô Quốc Tạo dìu dắt hướng dẫn tơi suốt trình làm luận văn, bảo định hướng thầy giúp tự tin nghiên cứu vấn đề giải toán cách khoa học Tôi xin trân trọng cảm ơn Ban giám hiệu Học viện khoa học công nghệ Việt Nam - Viện Hàn lâm khoa học công nghệ Việt Nam tạo điều kiện cho học tập làm luận văn cách thuận lợi Tôi xin cảm ơn hỗ trợ nhiệm vụ: “Hỗ trợ hoạt động nghiên cứu khoa học cho nghiên cứu viên cao cấp năm 2021” mã số: nvcc02.01/21-21 Viện Hàn lâm Khoa học Công nghệ Việt Nam (VAST), Hà Nội, Việt Nam Mặc dù cố gắng nhiều, chắn trình học tập luận văn khơng khỏi thiết sót Tơi mong thơng cảm bảo tận tình thầy cô bạn Hà Nội, ngày tháng năm 2021 Tác giả Phạm Văn Dương MỤC LỤC DANH MỤC KÝ HIỆU VÀ CÁC CHỮ VIẾT TẮT DANH MỤC HÌNH VẼ VÀ ĐỒ THỊ .8 MỞ ĐẦU .10 CHƯƠNG TỔNG QUAN VỀ PHÁT HIỆN, NHẬN DẠNG KÝ TỰ, SỰ PHÁT TRIỂN CỦA HỌC MÁY VÀ HỌC SÂU .12 1.1 Tổng quan phát nhận dạng ký tự 12 1.2 Sự phát triển học máy học sâu .13 1.3 Kết luận chương 17 CHƯƠNG GIỚI THIỆU VỀ MẠNG CONVOLUTION NEURAL NETWORK 18 2.1 Giới thiệu sơ lược CNN 18 2.2 Convolution Layer – Tầng Tích Chập 18 2.3 Strides – Bước nhảy 20 2.4 Padding – Đệm 21 2.5 Non Linearity (ReLU) – Phi tuyến tính 21 2.6 Pooling Layer – Tầng gộp 22 2.7 Full Connected Layer – Tầng kết nối đầy đủ 23 2.8 Kết luận chương 23 CHƯƠNG MƠ HÌNH MẠNG PIXELLINK CHO PHÁT HIỆN VĂN BẢN 24 3.1 Cấu trúc mạng 24 3.2 Kết nối điểm ảnh 27 3.3 Tối ưu .27 3.3.1 Tính tốn vùng xác .27 3.3.2 Hàm mát .28 3.4 Chuẩn bị liệu đào tạo .30 3.4.1 Chuẩn bị liệu 30 3.4.2 Dữ liệu thật: 31 3.4.3 Dữ liệu sinh .32 3.4.4 Tiền xử lý liệu: 33 3.4.5 Quá trình đào tạo 34 3.4.6 Tối ưu: 34 3.4.7 Kết đạt được: .35 3.4.8 Hạn chế mô hình 35 3.5 Kết luận chương 36 CHƯƠNG GIỚI THIỆU VỀ CONVOLUTION RECURRENT NEURAL NETWORK 37 4.1 Giới thiệu toán lợi CRNN 37 4.2 Cấu trúc 38 4.3 Tầng trích xuất đặc trưng chuỗi 39 4.4 Gán nhãn trình tự 39 4.5 Tầng Transcription 45 4.6 Hàm mát .47 4.7 Tóm tắt cấu trúc mơ hình 48 4.7.1 Cách tạo liệu đào tạo .49 4.7.2 Dữ liệu thật 49 4.7.3 Dữ liệu sinh .49 4.7.4 Hạn chế mơ hình .49 4.8 Kết luận chương 50 CHƯƠNG 5: CÀI ĐẶT THỬ NGHIỆM VÀ KẾT QUẢ .51 5.1 Bài toán 51 5.2 Mơ hình giải toán .51 5.3 Môi trường cài đặt .52 5.4 Dữ liệu kiểm thử 52 5.5 Kết thực nghiệm 53 KẾT LUẬN 55 TÀI LIỆU THAM KHẢO .57 DANH MỤC KÝ HIỆU VÀ CÁC CHỮ VIẾT TẮT Từ viết tắt Từ chuẩn Diễn giải CNN Convolutional Neural Network Mạng nơ-ron tích chập RNN Recurrent Neural Nework Mạng nơ-ron hồi quy CRNN Convolutional Recurrent Mạng nơ-ron hồi quy Neural Nework xoắn LSTM Long Short-term Memory Bộ nhớ ngắn hạn dài AI Artifical Intelligence Trí tuệ nhân tạo ML Machine Learning Học máy DL Deep Learning Học sâu NN Neural Network Mạng nơ-ron OCR Optical Character Recognition Nhận dạng ký tự quang học DANH MỤC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.0.1 Quá trình nhận dạng 10 Hình 1.0.2 Mối quan hệ giưa AI, ML, DL 11 Hình 1.0.3 Các giai đoạn AI 12 Hình 2.0.1 Mơ hình CNN sử dụng cho tốn phân loại 14 Hình 2.0.2 Nhân ma trận ảnh với lọc 15 Hình 2.0.3 Ma trận lọc 15 Hình 2.0.4 Kết thực phép nhân 15 Hình 2.0.5 Đầu ma trận có bước nhảy hai 16 Hình 2.0.6 Hoạt động hàm ReLU 17 Hình 2.0.7 Max Pooling 17 Hình 2.0.8 Mơ tả tầng kết nối đầy đủ 18 Hình 3.0.1 Mơ hình mạng VGG16 20 Hình 3.0.2 Quá trình Pixellink 21 Hình 3.0.3 Các hộp với diện tích khác 23 Hình 3.0.4 Hình minh họa trình xác định hộp 25 Hình 3.0.5 Dữ liệu sinh 27 Hình 3.0.6 Nhãn liệu sinh 28 Hình 3.0.7 Hàm mát phân loại điểm ảnh 29 Hình 3.8 hàm mát liên kết 29 Hình 3.0.9 Hình kết mơ hình Pixellink 29 Hình 3.0.10 Hình miêu tả hạn chế 30 Hình 4.0.1 Cấu trúc mạng CRNN 32 Hình 4.0.2 Mơ hình RNN 33 Hình 4.0.3 Cấu trúc mạng LSTM 34 Hình 4.0.4 Hình minh họa thơng tin truyền 35 Hình 4.0.5 Tầng mạng phép nhân 35 Hình 4.0.6 Hình minh họa cổng quên 36 Hình 4.0.7 Hình mơ tả cập nhật khối 37 Hình 4.0.8 Hình mơ tả trình cập nhật trạng thái 37 Hình 4.0.9 Hình mơ tả qúa trình xác định đầu 45 Hình 4.0.10 Hình họa chọn giá trị có xác suất cao 47 Hình 4.0.11 Hình họa chọn giá trị có xác suất cao 49 Hình 5.0.1 Giao diện chương trình truy cập 52 Hình 5.0.2 Giao diện chương trình tải ảnh CMT thành cơng 52 Hình 5.0.3 Giao diện chương trình sau kết 53 MỞ ĐẦU Nhận dạng mẫu ngành khoa học học máy (hay trí tuệ nhân tạo) nhằm phân loại liệu (các mẫu) vào số lớp Mẫu thực thể cần nhận ra, ví dụ: chữ in, chữ viết tay, vân tay, khn mặt, tiếng nói, hình dạng,… Cùng với phát triển khoa học kỹ thuật, ứng dụng nhận dạng mẫu ngày mở rộng, từ việc tự động hoá số quy trình sản xuất cơng nghiệp dự báo thời tiết, dự báo cháy rừng phần quan trọng hệ thống máy tính thơng minh… Một ứng dụng phổ biến nhận dạng mẫu phân tích nhận dạng ảnh tài liệu (có nguồn gốc từ hệ thống nhận dạng ký tự quang học), nhằm số hoá trang tài liệu giấy sách, báo, tạp chí,… Cho đến nay, tốn phân tích nhận dạng ảnh tài liệu giải gần trọn vẹn có sản phẩm thương mại, VnDOCR Viện công nghệ thông tin hay FineReader hãng ABBYY,… Bên cạnh lớp tốn phân tích nhận dạng ảnh tài liệu cách tổng quát có lớp tốn riêng biệt cho ngành, lĩnh vực cụ thể, như: phân tích nhận dạng bảng biểu, phiếu điều tra, mẫu điền thông tin, danh thiếp, hộ chiếu,… Đối với lớp tốn việc phân tích cấu trúc ảnh tài liệu đặc biệt quan trọng, định đến việc tách nhận dạng xác trường thông tin cần thiết cho ứng dụng cụ thể Trên giới có nhiều sản phẩm phần mềm phân tích nhận dạng ảnh thẻ chứa thơng tin cá nhân (như hộ chiếu, danh thiếp,…) ứng dụng nhiều lĩnh vực, như: làm thủ tục hải quan, giao dịch cửa hàng, khách sạn,… Ở Việt Nam loại thẻ chứa thông tin nhân sử dụng nhiểu Giấy chứng minh nhân dân (CMND) Do đó, luận văn này, tơi xin đề xuất phương pháp phân tích ảnh CMND dựa việc phân tích nhận dạng biểu mẫu với kỹ thuật xử lý hình ảnh thơng minh 10 Hình 4.0.5 Tầng mạng phép nhân Số lượng thông tin qua định hàm số 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 , miền giá trị hàm 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 nằm khoảng [0,1] Nếu khơng cho thơng tin qua, nghĩa cho tất thông tin qua Để cho tiết LSTM sâu vào bên LSTM Đầu tiên đưa định thông tin cần bỏ từ khối Điều thực hàm 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, hay gọi với tên khác “tầng cổng quên” Với đầu vào ℎ𝑡−1 𝑥𝑡 qua hàm 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, kết hàm 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 số thuộc [0, 1] định lượng thơng tin qua Hình 4.0.6 Hình minh họa cổng quên 𝑓𝑡 = 𝜎(𝑊𝑓 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑓 ) PT 5.0 43 Sau định thông tin qua cổng hay khơng bước xem xét thơng tin lưu lại khối Ở bước chia thành hai phần • Sử dụng sigmoid để định thông tin cập nhật, biến đổi thông tin cách sử dụng hàm tạo giá trị để cập nhật trạng thái • Sử dụng kết để cập nhật trạng thái khối Hình 4.0.7 Hình mơ tả cập nhật khối 𝑖𝑡 = 𝜎(𝑊𝑖 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑖 ) PT 5.2 𝐶̃𝑡 = (𝑊𝑐 [ℎ𝑡−1 , 𝑥𝑡 ] + 𝑏𝑐 ) Như trạng thái 𝐶𝑡−1 cũ trước cập nhật thành trạng thái 𝐶𝑡 Bằng cách nhân trang thái cũ với ft, ft định lượng thơng tin qn, sau thêm thơng tin vào, tức cộng thêm 𝑖𝑡 ∗ 𝐶̃𝑡 Như trạng thái phụ thuộc nhiều vào định trước 44 Hình 4.0.8 Hình mơ tả trình cập nhật trạng thái Phương trình tương đương 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 PT5.4 Mỗi trạng thái khối định giá trị đầu ra, để xác định giá trị đầu cần thực bước sau • Dùng tầng sigmoid để xác định thông tin cần đưa từ khối, sử dụng hàm 𝑡𝑎𝑛ℎ chuyển trạng thái tế bào khoảng [-1, 1] • Thực phép nhân kết thực hàm với giá trị đầu Hình 4.0.9 Hình mơ tả qúa trình xác định đầu 4.5 Tầng Transcription 45 Tầng transcription q trình chuyển kết dự đốn RNN sang chuỗi dự đốn Ở đây, transcription tìm nhãn với xác suất lớn dự đoán frame Trong thực tế tồn hai mô hình để thực việc chuyển đổi từ xác suất dự đốn sang nhãn tương ứng, lexicon-free lexicon-based Trong lexicon tập chuỗi có nhãn cố định Người ta sử dụng CTC cho trình đào đạo q trình dự đốn, phương pháp đề xuất Graves Sau trình bày phương pháp Phương pháp bao gồm hai q trình mã hóa giải mã văn bản, trình từ chuỗi xác suất đưa chuỗi văn gọi trình giải mã, khơng giống q trình đào tạo sử dụng mã hóa, biết nhãn chuỗi trước Q trình giả mã khác q trình đào tạo chỗ có mơ hình đào tạo sử dụng để nhận dạng văn khơng nhìn thấy trước đó, nghĩa chúng dựa vào ma trận đầu mạng để xác định chuỗi Nhưng chưa biết nhãn thực tế nó, mà mong muốn mơ hình xác định nhãn Nếu thử tất trường hợp có vài chuỗi cố định, thực tế khơng thể sử dụng cách Sử dụng thuật tốn đơn giản cho kết tốt với thực tế, gồm hai bước sau • Tìm chuỗi tốt cách lấy kí tự có xác suất cao tầng frame • Xóa bỏ tất “blank” từ chuỗi Ví dụ: Các kí tự “a”, “b” “-”(blank) Nhìn vào hình dưới, giả sử có đặc trưng chuỗi, áp dụng đường mã hóa tốt từ ma trận, to kí tự phù hợp “a” tương tự với t1 , t2 blank có điểm số cao t3 , cuối t4 “b” Như kết nhận “aaa-b”, sau xóa bỏ kí tự lặp lại gần kết đạt “a-b”, sau xóa bỏ blank kết thu “ab” Vậy đầu nhận dạng chuỗi “ab” 46 Hình 4.0.10 Hình họa chọn giá trị có xác suất cao Nhưng kết cách xấp xỉ, dễ dàng nhận kết từ cách trên, nhiên thuật toán xấp xỉ thường cho kết tốt với thực tế 4.6 Hàm mát Định nghĩa tập đào tạo 𝜒 = {𝐼𝑖 , 𝑙𝑖 }𝑖 𝑙𝑖 ảnh cho đào tạo, 𝑙𝑖 nhãn ảnh tương ứng, hàm tối ưu 𝛿 = − ∑ 𝑙𝑜𝑔𝑝(𝐼𝑖 | 𝑦𝑖 ) 𝐼𝑖 ,𝑙𝑖 𝜖𝜒 PT 5.7 Trong chuỗi sinh recunrrent convolution từ 𝐼𝑖 Nhận thấy đầu vào hàm mát mạng ảnh nhãn nội dung ảnh 47 4.7 Tóm tắt cấu trúc mơ hình Kiểu Cấu hình Transcription - Bidirectional-LSTM hidden units:256 Bidirectional-LSTM hidden units:256 Map-to-Sequence - Convolution maps:512, k:2 × 2, s:1, p:0 MaxPooling Window:1 × 2, s:2 BatchNormalization - Convolution maps:512, k:3 × 3, s:1, p:1 BatchNormalization - Convolution maps:512, k:3 × 3, s:1, p:1 MaxPooling Window:1 × 2, s:2 Convolution maps:256, k:3 × 3, s:1, p:1 Convolution maps:256, k:3 × 3, s:1, p:1 MaxPooling Window:2 × 2, s:2 Convolution maps:128, k:3 × 3, s:1, p:1 MaxPooling Window:2 × 2, s:2 Convolution maps:64, k:3 × 3, s:1, p:1 Input W × 32 gray-scale image Bảng 4.2 Bảng thành phần mơ hình CRNN 48 4.7.1 Cách tạo liệu đào tạo Như đề cập từ trước thành công mô hình học máy hay học sâu phụ thuộc nhiều vào liệu chất lượng liệu Đầu vào mạng ảnh với độ cao cố định 512, nội dung vùng ảnh Do hạn chế liệu thời gian làm đa dạng liệu, liệu chia thành hai phần liệu thật liệu sinh 4.7.2 Dữ liệu thật Tận dụng liệu gán nhãn việc đào tạo mơ hình pixellink, có chút thay đổi, đầu vào mạng ảnh có chiều cao 512 vùng nhãn nội dung vùng ảnh đó, nên sau cắt vùng ảnh từ ảnh gốc cần thay đổi kích thước vùng ảnh phù hợp với kích thước đầu vào Ví dụ ảnh đầu vào nhãn của vùng Ảnh đầu vào: Hình 4.0.11 Hình ví dụ ảnh đầu vào Nhãn là: 459709241360 4.7.3 Dữ liệu sinh Sử dụng kỹ thuật xử lý ảnh để vẽ nội dung lên ảnh, trình muốn tạo đa dạng liệu đào tạo nên sử dụng thêm kỹ thuật xử lý ảnh để tạo mẫu giống với liệu thực tế Tổng số liệu thật 1000 ảnh Dữ liệu sinh tự động lúc đào tạo với tỉ lệ xác suất dùng ảnh thật để đào tạo 0.7, tỉ lệ xác suất dùng ảnh sinh để đào tạo 0.3, trình sinh tự động tránh việc chiếm nhiều nhớ, sinh nhiêu đưa vào đào tạo 4.7.4 Hạn chế mơ hình 49 Bên cạnh điểm lợi trình đào tạo dự đoán dự vào đầu vào ảnh, bên cạnh mơ hình gặp số hạn chế định tốn với phơng chữ khác phải đào tạo phông tương ứng gần giống, lỗi thường gặp dự đoán sai kí tự có phân phối gần giống cặp sau: • Chữ “l” số “1” • Số “3” số “8” • Chữ “p” chữ “q” Những chữ phông khác có phân phối gần thường bị nhầm, chuỗi dài xác suất tồn chữ chuỗi bị hạn chế, nên số tốn thực tế ứng sau bước cần phải chỉnh sửa thông tin để kết đạt tốt 4.8 Kết luận chương Trong chương luận văn nghiên cứu mạng nơ ron hồi quy xoắn, Convolution recurren neural network(CRNN) mạng nơ ron sử dụng học sâu với kết hợp DCNN RNN tạo nên cấu trúc CRNN với lợi cấu trúc khác: - Có thể học trực tiếp chuỗi mà khơng cần xác vị trí phần tử chuỗi - Có thể trích xuất trực tiếp đặc trưng từ ảnh không yêu cầu xử lý thủ công tiền xử lý - Có tính chất RNN sinh chuỗi đối tượng - Không bị ràng buộc độ dài chuỗi, yêu cầu chuẩn hóa chiều cao hai q trình đào tạo kiểm tra - Cần tham số mạng DCNN tiêu chuẩn, tiêu tốn nhớ 50 ... TẠO KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CƠNG NGHỆ Phạm Văn Dương NGHIÊN CỨU BÀI TỐN BĨC TÁCH THƠNG TIN TRONG CHỨNG MINH THƯ SỬ DỤNG HỌC SÂU Chuyên ngành : Hệ thống thông tin Mã... đoan luận văn ? ?Nghiên cứu tốn bóc tách thơng tin chứng minh thư sử dụng học sâu? ?? nghiên cứu, tìm hiểu phát triển hướng dẫn PGS.TS Ngô Quốc Tạo, chép từ tài liệu, cơng trình nghiên cứu người khác... chương Trong chương luận văn đề cập đến thuật toán Pixellink thuật toán sử dụng học sâu, thuật toán để xác định phát văn Thuật tóa Pixellink thực gán nhãn mức độ cụm sử dụng hai chế lf phân loại