THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Tiêu đề | Big Data and Security |
---|---|
Tác giả | Yuan Tian, Tinghuai Ma, Muhammad Khurram Khan |
Trường học | Nanjing Institute of Technology |
Chuyên ngành | Computer Science |
Thể loại | Revised Selected Papers |
Năm xuất bản | 2021 |
Thành phố | Singapore |
Định dạng | |
---|---|
Số trang | 665 |
Dung lượng | 27,65 MB |
Nội dung
Ngày đăng: 14/03/2022, 15:09
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
2. Fisher, C.: Over 267 million Facebook users reportedly had data exposed online. Engadget, 19 December 2019. https://www.engadget.com/2019-12-19-facebook-data-exposed-online.html. Accessed 22 Dec 2019 | Link | |
8. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29 | Link | |
9. Zhao, P., Zhang, G., Wan, S., Liu, G., Umer, T.: A survey of local differential privacy for securing internet of vehicles. J. Supercomput. 76(11), 8391–8412 (2019). https://doi.org/10.1007/s11227-019-03104-0 | Link | |
1. Yang, M., Lyu, L., Zhao, J., Zhu, T., Lam, K.Y.: Local differential privacy and its applications:a comprehensive survey. arXiv preprint arXiv:2008.03686 (2020) | Khác | |
3. Bahri, L., Carminati, B., Ferrari, E.: Decentralized privacy preserving services for online social networks. Online Soc. Netw. Media 6, 18–25 (2018) | Khác | |
4. Chen, Y., Xie, H., Lv, K., Wei, S., Hu, C.: DEPLEST: a blockchain-based privacy-preserving distributed database toward user behaviors in social networks. Inf. Sci. 501, 100–117 (2019) | Khác | |
5. Kiranmayi, M., Maheswari, N.: A review on privacy preservation of social networks using graphs. J. Appl. Secur. Res. 1–34 (2020) | Khác | |
6. Siddula, M., Li, Y., Cheng, X., Tian, Z., Cai, Z.: Anonymization in online social networks based on enhanced Equi-Cardinal clustering. IEEE Trans. Comput. Soc. Syst. 6(4), 809–820 (2019) | Khác | |
7. Zhang, C., Jiang, H., Cheng, X., Zhao, F., Cai, Z., Tian, Z.: Utility analysis on privacy- preservation algorithms for online social networks: an empirical study. Pers. Ubiquit. Comput.1–17 (2019) | Khác | |
10. Zhao, J., Chen, Y., Zhang, W.: Differential privacy preservation in deep learning: challenges, opportunities and solutions. IEEE Access 7, 48901–48911 (2019) | Khác | |
11. Chamikara, M.A.P., Bertók, P., Liu, D., Camtepe, S., Khalil, I.: Efficient privacy preservation of big data for accurate data mining. Inf. Sci. 527, 420–443 (2020) | Khác | |
12. Zheng, X., Cai, Z.: Privacy-preserved data sharing towards multiple parties in industrial IoTs.IEEE J. Sel. Areas Commun. 38(5), 968–979 (2020) | Khác | |
13. Kim, J.W., Edemacu, K., Jang, B.: MPPDS: multilevel privacy-preserving data sharing in a collaborative eHealth system. IEEE Access 7, 109910–109923 (2019) | Khác | |
14. Kim, J.W., Lim, J.H., Moon, S.M., Yoo, H., Jang, B.: Privacy-preserving data collection scheme on smartwatch platform. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–4. IEEE, January 2019 | Khác | |
15. Shailaja, G.K., Rao, C.G.: Opposition intensity-based cuckoo search algorithm for data privacy preservation. J. Intell. Syst. 29(1), 1441–1452 (2019) | Khác | |
16. Almani, D.: Privacy preservation data mining and security. In: 2020 3rd International Confer- ence on Computer Applications and Information Security (ICCAIS), pp. 1–6. IEEE, March 2020 | Khác | |
17. Aljably, R., Tian, Y., Al-Rodhaan, M., Al-Dhelaan, A.: Anomaly detection over differential preserved privacy in online social networks. Plos ONE 14(4), e0215856 (2019) | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN