10 Thínghiệmvậtlýnổi tiếng
Size- Size+ Câu chuyện khoa học
Trong ngành vật lý, có nhiều thínghiệm đơn giản nhưng kết quả đạt
được rất lớn và là tiền đề cho rất nhiều lý thuyết vậtlý khác. Theo
cuộc thăm dò của các nhà khoa học Mỹ về thínghiệm đẹp nhất trong
lịch sử từ trước đến nay, xếp theo thứ tự về thời gian, 10thínghiệm
đó như sau:
1. Đo đường kính Trái Đất của Eratosthenes
Thí nghiệm được tiến hành cách đây khoảng 2.300 năm, tại thành
phố Awan của Ai Cập, Eratosthenes, một người thủ thư ở Alexandria
đã xác định được thời điểm mà ánh sáng mặt trời chiếu thẳng đứng
xuống bề mặt đất. Có nghĩa là hình chiếu của một chiếc cọc thẳng
đứng trùng với chân cọc.
Sau đó một năm, ông đã đo bóng của một chiếc cọc đặt ở Alexandria
(Ai Cập), và phát hiện ra rằng ánh nắng Mặt Trời nghiêng 7 độ so với
phương thẳng đứng.
Trái Đất là hình cầu nên chu vi của nó tương ứng với một góc 360 độ.
Nếu hai thành phố (Awan và Alexandria) cách nhau một góc 7 độ, thì
góc đó phải tương ứng với khoảng cách giữa hai thành phố ấy (với
giả định rằng cả hai thành phố cùng nằm trên đường xích đạo). Dựa
vào mối liên hệ này, Eratosthenes đã tính ra chu vi của Trái Đất là
250.000 stadia.
Đến nay, người ta vẫn chưa biết chính xác 1 stadia theo chuẩn Hy
Lạp là bao nhiêu mét, nên chưa thể có kết luận về độ chính xác trong
thí nghiệm của Eratosthenes. Tuy nhiên, phương pháp của ông hoàn
toàn hợp lý về mặt logic. Nó cho thấy Eratosthenes không những đã
biết Trái Đất hình cầu, mà còn hiểu về chuyển động của nó quanh
Mặt Trời.
2. Vật rơi tự do của Galilei
Cho đến cuối thế kỷ 16, có một quan niệm khá phổ biến lúc bấy giờ là
vật thể nặng sẽ rơi nhanh hơn vật thể nhẹ. Tuy nhiên, Galileo Galilei
lại không tin vào điều đó. Ông vốn là một thầy giáo dạy toán ở Đại
học Pisa, Ý.
Ông đã thực hiện một thínghiệmtại Tháp nghiêng Pisa. Thínghiệm
này như sau: Các vật có khối lượng khác nhau được ông thả rơi tự
do từ trên tháp xuống đất và kết luận được rút ra từ thínghiệm này là
thời gian rơi của chúng là như nhau nếu bỏ qua sức cản của không
khí.
3. Các viên bi lăn trên mặt dốc của Galilei
Một thínghiệm cũng rất nổitiếng của Galileo Galilei là thínghiệm xác
định một đại lượng có ảnh hưởng đến thời gian di chuyển của vật thể
khi vật thể di chuyển đến gần mặt đất (gần tâm Trái Đất).
Ông đã thiết kế một tấm ván dài 5,5 m, rộng 0,22 m và trên tấm ván
đó có xẻ một rãnh nhỏ. Tấm ván được dựng theo một độ dốc nhất
định và các viên bi đồng được thả theo rãnh đó. Để đo thời gian di
chuyển của những viên bi, ông dùng một chiếc đồng hồ nước có
nguyên lý là khối lượng nước thu được sẽ chỉ ra thời gian tương ứng.
Ông thấy rằng, càng xuống chân dốc, các viên bi chạy càng nhanh.
Kết quả của thínghiệm đã chỉ ra rằng, quãng đường đi tỷ lệ thuận với
bình phương của thời gian di chuyển, đó là do viên bi luôn chịu tác
dụng của một đại lượng gọi là gia tốc tự do (g = 9,8 m/s²). Gia tốc này
được gây ra bởi lực hấp dẫn của Trái Đất.
4. Tán sắc ánh sáng của Newton
Trước Isaac Newton người ta vẫn cho rằng ánh sáng là một dạng
thuần khiết, không thể phân tách. Tuy nhiên, Newton đã chỉ ra sai lầm
này, khi ông chiếu một chùm tia sáng Mặt Trời qua một lăng trụ kính
rồi chiếu lên tường. Những gì thu được từ thínghiệm của Newton cho
thấy ánh sáng trắng không hề "nguyên chất", mà nó là tổng hợp của
một dải quang phổ 7 màu cơ bản: đỏ, da cam, vàng, xanh lá cây,
xanh nước biển, chàm, tím. Thínghiệm này thể hiện hiện tượng tán
sắc ánh sáng.
5. "Sợi dây xoắn" của Cavendish
Mọi người đều biết rằng Newton là người tìm ra lực hấp dẫn. Ông đã
chỉ ra rằng hai vật có khối lượng luôn hút nhau bằng một lực tỷ lệ
thuận với khối lượng và tỷ lệ nghịch với bình phương khoảng cách
giữa chúng. Tuy nhiên, làm sao để chỉ cho người khác thấy lực hấp
dẫn bằng thínghiệm khi nó quá yếu?
Vào năm 1797 - 1798, thínghiệm này đã được thực hiện bởi nhà
khoa học người Anh Henry Cavendish. Ông đã sử dụng thiết bị thuê
của người dân nông thôn. Thiết bị thuê là sự cân bằng độ xoắn, thực
chất là một dây kéo căng đỡ những trọng lượng hình cầu. Ông cho
gắn hai viên bi kim loại vào hai đầu của một thanh gỗ, rồi dùng một
sợi dây mảnh treo cả hệ thống lên, sao cho thanh gỗ nằm ngang. Sau
đó, Cavendish đã dùng hai quả cầu bằng chì, mỗi quả nặng 195 kg
(350 pound), tịnh tiến lại gần hai viên bi ở hai đầu gậy. Theo giả
thuyết, lực hấp dẫn do hai quả cầu chì tác dụng vào hai viên bi sẽ làm
cho cây gậy quay một góc nhỏ, và sợi dây sẽ bị xoắn một vài đoạn.
Kết quả, thínghiệm của Cavendish được xây dựng tinh vi đến mức
nó phản ánh gần như chính xác giá trị của lực hấp dẫn. Ông cũng
tính ra được một hằng số hấp dẫn gần đúng với hằng số mà chúng ta
biết hiện nay. Thínghiệm được biết như sự cân Trái Đất và sự xác
định của lực hấp dẫn, cho phép tính toán khối lượng Trái Đất. Thậm
chí Cavendish còn sử dụng nguyên lýthínghiệm này để tính ra được
khối lượng của Trái Đất là 6 × 1024 kg.
6. Giao thoa ánh sáng của Young
Qua nhiều cuộc tranh luận, Isaac Newton đã hướng lý thuyết vậtlý về
bản chất ánh sáng là hạt chứ không phải là sóng. Vào năm 1803, nhà
thầy thuốc và nhà vậtlý trẻ người Anh tên là Thomas Young đã tiến
hành thínghiệm theo suy nghĩ của mình. Anh cắt một lỗ nhỏ trên một
cửa sổ và bao phủ nó bởi một tấm bìa dày có một lỗ nhỏ ở đó và sử
dụng một cái gương để làm lệch hướng chùm tia ánh sáng mảnh
xuyên qua đó. Sau đó, anh cầm lấy một cái thẻ nhỏ dày khoảng 1/13
inch và đặt nó ở giữa chùm tia, chia chùm tia sáng thành hai phần.
Kết quả thu được trên tường là một hình bóng bao gồm những băng
ánh sáng và bóng tối giao thoa với nhau, một hiện tượng có thể được
giải thích nếu hai chùm tia sáng đó là sóng ánh sáng. Điểm sáng là
nơi hai đỉnh sóng giao nhau, điểm tối là nơi một đỉnh sóng giao thoa
với một bụng sóng.
Với thínghiệm này Thomas Young đã phản bác được lý thuyết của
Newton là bản chất ánh sáng là hạt.
7. Con lắc nhà thờ Pathéon của Foucault
Vào năm 1851, nhà khoa học người Pháp Léon Foucault đã sử dụng
một dây thép dài 68 m để treo một quả cầu sắt nặng 31 kg từ mái
vòm của nhà thờ Panthéon và tác dụng một lực ban đầu, cho nó lắc
đi lắc lại. Để đánh dấu quá trình chuyển động của quả cầu, ông đã
cho gắn một kim nhọn vào quả cầu và cho vẽ một vòng tròn trên cát
ẩm ở mặt đất phía dưới chuyển động của quả cầu. Trước mắt những
người chứng kiến, quả cầu đã để lại những vệt của đường đi khác
nhau sau mỗi chu kỳ chuyển động. Thực ra, mặt phẳng cát có vệt
đường đi đó đã chuyển động chậm chạp và việc này đã chỉ ra rằng
Trái Đất quay tròn xung quanh trục của nó. Tại đường vĩ độ đi qua
thành phố Paris, đường chuyển động của con lắc đã thực hiện một
vòng quay thuận chiều kim đồng hồ cứ sau 30 giờ. Tại Nam Bán Cầu,
đường đi đó ngược chiều kim đồng hồ, và tại xích đạo, nó không
quay tròn chút nào. Tại Nam Cực, những nhà khoa học ngày nay đã
xác nhận chu kỳ của đường đi của con lắc là 24 giờ.
Như vậy, với thínghiệm này, Foucault đã chỉ ra rằng, Trái Đất tự
quay xung quanh trục của nó.
8. Giọt dầu của Millikan
Từ thời xa xưa, các nhà khoa học đã nghiên cứu về điện, một hiện
tượng đến từ bầu trời như là những tia chớp hoặc có thể tạo ra đơn
giản khi bạn chải tóc bằng lược. Vào năm 1897, nhà vậtlý người Anh
J. J. Thomson đã mới phát hiện ra một loại hạt tích điện, gọi là điện
tử (electron). Có điều ngay cả Thomson cũng đã không xác định
được giá trị điện tích của electron. Sau đó, thínghiệm về những hạt
này đã được nhà khoa học Mỹ Robert Milikan thực hiện vào năm
1909 để đo sự tích nạp của chúng. Sử dụng một máy phun hương
thơm, Milikan đã phun các giọt dầu vào một hộp trong suốt. Đáy và
đỉnh hộp làm bằng kim loại được nối với nguồn pin với một đầu là âm
(-) và một đầu là dương (+). Trong thínghiệm này, Millikan đã đặt một
hiệu điện thế cực lớn (khoảng 10.000 V) giữa hai điện cực kim loại
đó.
Milikan quan sát từng giọt rơi một và sự thay đổi điện áp rồi ghi chú
lại tất cả những hiệu ứng. Ban đầu, giọt dầu không tích điện, nên nó
rơi dưới tác dụng của trọng lực. Tuy nhiên sau đó, Millikan đã dùng
một chùm tia Roentgen để ion hóa giọt dầu này, cấp cho nó một điện
tích. Vì thế, giọt dầu này đã rơi nhanh hơn, vì ngoài trọng lực, nó còn
chịu tác dụng của điện trường. Dựa vào khoảng thời gian chênh lệch
khi hai giọt dầu rơi hết cùng một đoạn đường, Millikan đã tính ra điện
tích của một hạt tích điện nhỏ nhất là 1 electron: e = 1,63 × 10-19
coulomb.
Năm 1917, Millikan lặp lại thínghiệm trên, và đã sửa điện tích của 1
electron là e = 1,59 × 10-19 coulomb. Những đo đạc hiện nay dựa
trên nguyên lý của Millikan cho kết quả là e = 1,602 × 10-19 coulomb.
9. Bắn các hạt alpha vào lá vàng mỏng của Rutherford
Trước khi Ernest Rutherford thực hiện thử nghiệm về sự bức xạ của
các hạt alpha tại trường Đại học Manchester vào năm 1911, người ta
vẫn nhầm tưởng rằng nguyên tử có cấu trúc "mềm": gồm các hạt tích
điện dương đan xen với các electron, tạo thành một hỗn hợp "plum
pudding" (mứt mận). Nhưng khi Rutherford cùng với những người trợ
lý cho thực hiện thínghiệm bắn các hạt alpha vào lá vàng mỏng, họ
rất ngạc nhiên vì một phần trăm các hạt alpha đã phản hồi lại. Rõ
ràng, nếu cấu trúc nguyên tử có dạng mềm như "plum pudding" thì đã
không thể có sự phản hồi này, mà các hạt alpha sẽ bị dính hết vào
các nguyên tử vàng, tương tự như khi người ta ném một cục bột
mềm vào một chậu bánh mứt. Điều đó cho thấy trong cấu trúc
nguyên tử, ngoài các electron, phải có một hạt nhân rất cứng.
Rutherford đã kết luận là hầu hết khối lượng nguyên tử phải được tập
trung trong một lõi nhỏ xíu gọi là hạt nhân, với những điện tử khác
chuyển động xung quanh nó trên những quỹ đạo khác nhau, ở giữa
là những khoảng không.
Với những sự thay đổi từ những lý thuyết định lượng, mô hình
nguyên tử của Rutherford vẫn còn nguyên giá trị.
10. Hiện tượng giao thoa của hai chùm electron
Vào năm 1924, nhà vậtlý người Pháp Louis de Broglie đề xướng
rằng electron và những hạt vật chất khác cũng có những thuộc tính
sóng như bước sóng và tần số. Về sau, có một thínghiệm về tính
chất sóng của electron đã được thực hiện bởi Clinton Joseph
Davisson và Lester Halbert Germer ở Phòng thínghiệm Bells. Để giải
thích ý tưởng cho bản thân mình và những người khác, các nhà vậtlý
đã lặp đi lặp lại thínghiệm giống của của Young về sự giao thoa ánh
sáng nhưng thay chùm ánh sáng bằng chùm tia electron. Theo định
luật, những dòng hạt này sau khi được chia làm hai sẽ giao thoa với
nhau, để lại những phần sáng và tối như đã thấy ở thínghiệm giao
thoa ánh sáng của Young.
Đến nay, người ta vẫn không biết chắc thínghiệm trên được thực
hiện lần đầu tiên ở đâu, và ai là tác giả. Theo ông Peter Rodger, biên
tập viên khoa học của tạp chí Physics Today, thì lần đầu tiên ông đọc
được một bài viết về thínghiệm này là năm 1961, và tác giả là nhà
vật lý Claus Joensson ở Đại học Tueblingen (Tây Đức). Tuy nhiên, có
lẽ thínghiệm trên đã được thực hiện trước đó, có điều, đây là thời kỳ
mà người ta tập trung nhiều vào các chương trình khoa học lớn, và
đã không có ai để ý đến nó. Mãi đến khi người ta lật lại lịch sử các thí
nghiệm khoa học và cảm nhận được "vẻ đẹp" của các chùm electron
thì họ không biết được ai là người đầu tiên chứng minh được tính
sóng của chúng nữa.
. 10 Thí nghiệm vật lý nổi tiếng
Size- Size+ Câu chuyện khoa học
Trong ngành vật lý, có nhiều thí nghiệm đơn giản nhưng kết quả. Halbert Germer ở Phòng thí nghiệm Bells. Để giải
thích ý tưởng cho bản thân mình và những người khác, các nhà vật lý
đã lặp đi lặp lại thí nghiệm giống của