B GIÁO DC VÀ ÀO TO
CHÍNH THC
THI TUYN SINH I HC, CAO NG NM 2005
Môn: TOÁN, khi B
Thi gian làm bài: 180 phút, không k thi gian phát đ
Câu I (2 đim)
Gi
m
(C ) là đ th ca hàm s
()
2
xm1xm1
y
x1
++ ++
=
+
(*) ( m là tham s).
1) Kho sát s bin thiên và v đ th ca hàm s (*) khi m1.=
2) Chng minh rng vi
m
bt k, đ th
m
(C ) luôn luôn có đim cc đi, đim cc tiu
và khong cách gia hai đim đó bng
20.
Câu II (2 đim)
1) Gii h phng trình
()
23
93
x1 2y 1
3log 9x log y 3.
⎧
−+ − =
⎪
⎨
−=
⎪
⎩
2) Gii phng trình 1 sin x cos x sin 2x cos 2x 0.++ + + =
Câu III (3 đim)
1) Trong mt phng vi h ta đ Oxy cho hai đim A(2; 0) và B(6; 4) . Vit phng trình
đng tròn (C) tip xúc vi trc hoành ti đim A và khong cách t tâm ca (C) đn
đim B bng 5.
2)
Trong không gian vi h ta đ Oxyz cho hình lng tr đng
111
ABC.A B C vi
1
A(0; 3;0), B(4; 0; 0), C(0;3;0), B (4;0; 4).−
a) Tìm ta đ các đnh
11
A,C. Vit phng trình mt cu có tâm là A và tip xúc vi
mt phng
11
(BCC B ).
b) Gi M là trung đim ca
11
AB. Vit phng trình mt phng (P) đi qua hai đim
A, M và song song vi
1
BC . Mt phng (P) ct đng thng
11
AC ti đim N .
Tính đ dài đon
MN.
Câu IV (2 đim)
1) Tính tích phân
2
0
sin2x cosx
Idx
1cosx
π
=
+
∫
.
2) Mt đi thanh niên tình nguyn có 15 ngi, gm 12 nam và 3 n. Hi có bao nhiêu
cách phân công đi thanh niên tình nguyn đó v giúp đ 3 tnh min núi, sao cho mi
tnh có 4 nam và 1 n?
Câu V (1 đim)
Chng minh rng vi mi
x,∈{
ta có:
xx x
xxx
12 15 20
345
543
⎛⎞⎛⎞⎛⎞
++ ≥++
⎜⎟⎜⎟⎜⎟
⎝⎠⎝⎠⎝⎠
.
Khi nào đng thc xy ra?
Ht
Cán b coi thi không gii thích gì thêm.
H và tên thísinh S báo danh …
Mang Giao duc Edunet - http://www.edu.net.vn
. B GIÁO DC VÀ ÀO TO
CHÍNH THC
THI TUYN SINH I HC, CAO NG NM 2005
Môn: TOÁN, khi B
Thi gian làm b i: 180 phút, không.
mt phng
11
(BCC B ).
b) Gi M là trung đim ca
11
AB. Vit phng trình mt phng (P) đi qua hai đim
A, M và song song vi
1
BC . Mt phng (P)