1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Đề thi tuyển chọn hệ kỹ sư tài năng năm 2002 - Môn Toán pptx

1 296 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 47,18 KB

Nội dung

1 Trường Đại học Bách Khoa Hà Nội Đề thi tuyển chọn hệ kỹ tài năng năm 2002 Môn thi : Toán Thời gian làm bài : 120 phút 1 Bài 1: Cho bất phương trình : x 1+|x| ≥ mx 2 + x (1) 1/ Giải bất phương trình (1) khi m =2. 2/ Tìm m ∈ R lớn nhất sao cho bất phương trình (1) nghiệm đúng với mọi x ∈ R. Bài 2: Cho dãy số {x n } xác định như sau :  x 1 = − 1 3 x n+1 = x 2 n 2 − 1 nếu n ≥ 1 Chứng minh rằng dãy {x n } có giới hạn khi n →∞và tìm giới hạn đó. Bài 3: Cho các số thực a 0 ,a 1 , ,a 2002 thỏa mãn :  a 0 =0 a 0 + a 1 2 + a 2 3 + + a 2002 2003 =0 Chứng minh rằng phương trình a 0 + a 1 x + a 2 x 2 + + a 2002 x 2002 =0 có nghiệm trên đoạn [0, 1]. Bài 4: Cho hàm số y = f (x) có đạo hàm cấp hai f”(x) ≥ 0 trên toàn bộ R và a ∈ R cố định. Tìm giá trị lớn nhất của hàm số g(x)=f (x)+(a − x)f  (x) trên R. 1 Tài liệu đượ c soạn thảo lại bằng L A T E X2 ε bởi Phạm duy Hiệp . 1 Trường Đại học Bách Khoa Hà Nội Đề thi tuyển chọn hệ kỹ sư tài năng năm 2002 Môn thi : Toán Thời gian làm bài : 120 phút 1 Bài 1: Cho bất. a 0 ,a 1 , ,a 2002 thỏa mãn :  a 0 =0 a 0 + a 1 2 + a 2 3 + + a 2002 2003 =0 Chứng minh rằng phương trình a 0 + a 1 x + a 2 x 2 + + a 2002 x 2002 =0 có

Ngày đăng: 25/01/2014, 16:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN