... 5 .1 ∗ 5.2 ∗ 5.3 5.4 5.5 5.6 5.7 5.8 5.9 93 98 10 3 11 1 PART II Chapter 11 2 11 4 11 5 11 8 12 1 12 6 13 4 13 9 14 0 Transportation and Network Flow Problems 14 5 6 .1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6 .10 ... Subspace 11 .7 Sensitivity 11 .8 Inequality Constraints 11 .9 Zero-Order Conditions and Lagrange Multipliers 11 .10 Summary 11 .11 Exercises Chapter 12 Primal...
Ngày tải lên: 06/08/2014, 15:20
... x1 + x2 − x3 = 2x1 − 3x2 + x3 = −x1 + 2x2 − x3 = 1 To obtain an original basis, we form the augmented tableau e1 0 e2 e3 0 a1 a2 a3 b 1 1 −3 1 1 1 and replace e1 by a1 e2 by a2 , and e3 ... 2. 2 Examples of Linear Programming Problems 15 c x + c2 x2 + · · · + c n x n subject to the nutritional constraints a 11 x1 + a 12 x2 + · · · + a1n xn a 21 x1 + a 22 x2 + · · · + a2n...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 3 ppsx
... Method x2 1 1 x3 1 −2 x4 1 x5 0 x6 1 x7 b −2 1 Second tableau—phase I 1 1 1 0 1 Final tableau—phase I Now we go back to the equivalent reduced problem cT x3 x2 x4 1 1 1 x5 1 b 14 Initial ... 1 1 xB 0 1 Now T = 1 3 B 1 = −2 and r1 = −7 r4 = 3 r5 = ∗ 3. 8 The Simplex Method and LU Decomposition 59 We select a1 to enter the basis We have the tableau B 1 Variable −2...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 4 doc
... usual, we obtain the new tableau and new follows B 1 Variable Value 0 2 s1 3 T 1 1/2 1/ 2 0 0 1 1 1/ 2 1/ 2 1/ 2 0 s1 1/ 2 1/ 2 −2 −2 1 1 1/ 2 1/ 2 = 4 −2 −7 B 1 = 1 −2 −5 as 70 Chapter The Simplex ... explanation 1 2 4 1 0 3/2 1 2 −3 0 0 0 1/ 2 1/ 2 1 1 2 1/ 2 1 10 1 The optimal solution is x1 = 0, x2 = 1, x3 = The corresponding dual program is maximize subject to...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 5 docx
... /y2j and select the minimum positive ratio This yields the pivot indicated Continuing, the remaining tableaus are 0 − 1 1 0 5/ 2 1/ 2 7/2 1/ 2 1/ 2 3/2 −2 Second tableau 5/ 2 1 1/2 −2 1 1 11 0 ... problem, and the corresponding dual solution is ˆ = − r ii) Show that this scheme fully allocates H 12 Solve the linear inequalities −2x1 + 2x2 2x1 − x2 − 4x2 15 x1 − 12 x2 12 x1 +...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 6 pptx
... Ek +1 is defined to be the minimal-volume ellipsoid containing 1/ 2 Ek It is constructed as follows Define = m +1 = yk m2 m2 − 1/ 2 E Fig 5 .1 A half-ellipsoid =2 ∗ 5.3 The Ellipsoid Method 11 7 Then ... m +1 The reduction in volume is the product of the square roots m2 1 of these, giving the equality in the theorem Then using + x p exp , we have m2 m2 − m 1 /2 m = 1+ m +1 m 1 < e...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 7 pps
... constraint equations in standard form: x 11 + x12 + · · · + x1n = a1 = a2 x 21 + x22 + · · · + x2n xm1 + xm2 + · · · + xmn = am + x 21 x 11 xm1 + x22 x12 x1n + xm2 + x2n = b1 = b2 (3) + xmn = bn The ... Goldfarb and Xiao [G 11] , Gonzaga and Todd [G14], Todd [T4], Tun el [T10], Tutuncu [T 11] , and others The homogeneous and self-dual embedding method can be found in Ye et al [Y...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 8 pdf
... (1, 2) (3, 1) (b) (4, 1) (3, 1) 2 (–, ∞) 1 1 1 3 (1, 1) (2, 1) (c) (d) (–, ∞) (5, 1) 1 2 (e) Fig 6.6 Example of maximal flow problem (5, 1) 17 1 17 2 Chapter Transportation and Network Flow Problems ... source, and node is the sink The original network with capacities indicated on the 6 .8 Maximal Flow (1, 1) (2, 1) 2 (–, ∞) 1 (4, 1) (1, 2) (2, 1) (a) (4, 1) (3, 2)...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 9 ppsx
... at x0 = 10 0, each of the sequences below might be generated from iterative application of this algorithm 10 0 50 25 12 −6 −2 1/ 2 10 0 −40 20 −5 −2 1/ 4 1/ 8 10 0 10 1 1 /16 1/ 100 1/ 1000 1/ 10 000 The ... , alternatively y = x1 or y = x2 , we have Setting x = x1 + − x2 and f x1 f x1 + − (10 ) f x2 Multiplying (10 ) by f x + f x x1 − x f x + f x x2 − x (11 ) and (11 ) by (1...
Ngày tải lên: 06/08/2014, 15:20
David G. Luenberger, Yinyu Ye - Linear and Nonlinear Programming International Series Episode 1 Part 10 pot
... write (13 ) as xk +1 − x∗ = xk − x∗ xk 1 − x∗ g xk 1 xk x∗ g xk 1 xk Now, by the mean value theorem with remainder, we have (see Exercise 2) g xk 1 xk = g (14 ) k and g xk 1 xk x∗ = g where k and tively ... Q 1 x n i =1 n i =1 xi2 i xi n i =1 xi2 / i which can be written as xT x 1/ n = n i =1 i i ≡ xT Qx xT Q 1 x i =1 i / i where i = xi2 / n xi2 We have converted the express...
Ngày tải lên: 06/08/2014, 15:20
preparation series for the new toeic test advanced course 4 Episode 1 Part 10 pot
Ngày tải lên: 21/07/2014, 21:21
preparation series for the new toeic test advanced course 4 Episode 1 Part 9 pot
Ngày tải lên: 21/07/2014, 21:21
preparation series for the new toeic test advanced course 4 Episode 1 Part 8 pps
Ngày tải lên: 21/07/2014, 21:21
preparation series for the new toeic test advanced course 4 Episode 1 Part 7 pps
Ngày tải lên: 21/07/2014, 21:21
preparation series for the new toeic test advanced course 4 Episode 1 Part 6 docx
Ngày tải lên: 21/07/2014, 21:21