0
  1. Trang chủ >
  2. Kỹ Thuật - Công Nghệ >
  3. Kĩ thuật Viễn thông >

Fundamentals of Polymer Engineering Part 13 doc

Fundamentals of Polymer Engineering Part 13 doc

Fundamentals of Polymer Engineering Part 13 doc

... Inc.12.12.ThePMMAsampleofExample12.5andProblem12.11isstretchedinuniaxialtension.Willshearyieldingorcrazingoccurfirst?Atwhatvalueofs1?12 .13. Apolystyrenesampleofunitvolumeissubjectedtoafatiguetestatatemperatureof50Candfrequencyof10Hz.UsethedataofFigures12.7and12.15toestimatetheinitialrateoftemperatureriseinthesample.Assume ... Inc.FIGURE 12.8 Effect of temperature on the stress–strain cur ves of polystyrene melts.(From Ref. 13. )FIGURE 12.9 Qualitative effect of temperature on the elastic modulus of polymers.496 Chapter ... Inc.mentionedinChapter2.Torecapitulate,thepolymerfreevolumeisthedifferenceinthesamplevolumeandtheactualvolumeoccupiedbytheatomsandmolecules.Thefreevolumeiszeroatabsolutezerotemperatureanditincreasesasthetemperatureincreases.Slowcoolingallowsforacloserapproachtoequilibriumandalowerfreevolumerelativetomaterialsubjectedtorapidcooling.Thus,theslowlycooledsamplehastobeheatedtoahighertemperatureinorderthattherebeenoughfreevolumeforthemoleculestomovearound,andthisimpliesahigherTg.InadditiontochangesinTgwithcoolingrate,wealsoobservevolumerelaxationwhenapolymersamplethatwasrapidlycooledissubsequentlyheatedtoatemperatureclosetoTgandheldthereforsometime.Materialshrinkagealsooccurs,accompaniedbychangesinthemechanicalpropertiesofthesolidpolymer.Thephenomenonisknownasphysicalaging[15]andisthesubjectofconsiderableresearchbecauseofitsinfluenceonpropertiessuchascreep[16].Theglasstransitiontemperatureofapolymerdependsonanumberoffactors,includingthepolymermolecularweight.Themolecular-weightdepen-dencecanbeseeninFigure12.11,wheretheTgofpolystyreneisplottedasafunctionofthenumber-averagemolecularweight[3,17].Thesedatacanberepresentedmathematicallybythefollowingequation[18]:Tg¼Tg1KMMnð12:3:1ÞThisvariationofTgwithmolecularweightcanagainberelatedtothefreevolume[19].Asthemolecularweightdecreases,thenumberdensityofchainendsincreases.BecauseeachchainendisassumedtocontributeafixedamountoffreeFIGURE12.10Variationofvolumeorenthalpyofpolymerswithtemperature.498Chapter...
  • 39
  • 219
  • 0
Fundamentals of Polymer Engineering Part 4 docx

Fundamentals of Polymer Engineering Part 4 docx

... A., and D. H. Sebastian, Principles of Polymerization Engineering, Wiley, New York, 1983.4. Kumar, A., and S. K. Gupta, Fundamentals of Polymer Science and Engineering, TataMcGraw-Hill, New ... Experimental Validation of ReversiblePolymerization, Ph.D. thesis, Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India, 1988.Step-Growth Polymerization 143Copyright ... 3.1. As a matter of fact, one of the practical methods of achieving a PDI of more than 2 is to partiallyrecycle a portion of the product stream, as shown in Figure 3.4 [19–22].Polymerization...
  • 50
  • 224
  • 0
Fundamentals of Polymer Engineering Part 9 doc

Fundamentals of Polymer Engineering Part 9 doc

... !1:39¼14;876Inclosingthissection,wenotethat,fromEq.(8.6.8),½ZM=NAisthevolumeofapolymermoleculemultipliedby2.5,whereascNA=Misobviouslythenumberofpolymermoleculesperunitvolume.Asaconsequence,½Zc,whichistheproductofthesetwoquantities,representsthevolumefractionofpolymermultipliedby2.5.Ifthisnumberissmallcomparedtounity,thepolymersolutionisconsideredtobedilute;ifitisoftheorderofunity,thesolutionisconsideredmoderatelyconcentratedwithanearcertaintyofintermolecularinteractions.8.7GELPERMEATIONCHROMATOGRAPHYThesimplestconceptualmethodofdeterminingthemolecularweightdistributionofapolymersampleistoseparatethepolydispersesampleintoitsconstituentfractionsandthenmeasurethemolecularweightofeachfractionusinganyofthetechniquesdiscussedsofar.Thisisexactlywhatusedtobedoneuntilthecommercializationinthemid-1960softheprocedureknownasgelpermeationchromatography(GPC)orsize-exclusionchromatography.Intheoldmethod,apolymerinsolutionwasfractionatedeitherbythesequentialadditionofnonsolventsorbytheprogressiveloweringoftemperature(seeChapter9forthetheoryofpolymer–polymerphaseequilibrium).However,thiswasaverytediousandtime-consumingprocessthatwasobviouslyill-suitedtoroutinelaboratoryprocedures.ThenewmethodofGPCusesthefactthatlargepolymermoleculesareexcludedfromthesmallchannelsinaporousgel,withtheresultthatdifferentmolecularweightfractionstraveldownacolumnpackedwiththeporousmediumatdifferentrates,leadingtoseparationbasedonsize.AschematicdiagramofaGPCsetupisshowninFigure8.11.Solventismade ... Inc.alkali.Ifablanksolutionofthebenzylalcoholpluschloroformrequired5mLofthebase,howmanycarboxylendgroupswerecontainedinthepolymersample?Solution:Because30mLof0.105gramequivalentperliterofthebasereactedwiththepolymer,theconcentrationofgramequivalentsofendgroupswasð30Þð10À6Þð0:105Þ0:15¼21Â10À6equivalentspergram8.3COLLIGATIVEPROPERTIESItiseasilyobservedthatdissolvinganonvolatilesoluteinaliquidresultsinadepressionofthefreezingpoint;thatis,thetemperatureatwhichasolidphaseisformedfromsolutionislowerthanthetemperatureatwhichthepuresolventfreezes.Thisistheprincipleatworkinanicecreammakerandinsnowremovalwhensaltisusedtomeltandtherebyremovesnowandicefromroads.Besidesloweringthefreezingpoint,theadditionofanonvolatilesolutealsoreducesthevaporpressureatagiventemperature,withtheconsequencethatthesolutionboilsatahighertemperaturethanthepuresolventdoes.Furthermore,asolutioncandevelopalargeosmoticpressure(explainedlater),whichcanbemeasuredwithrelativeease.Thesefoureffects—depressionoffreezingpoint,elevationofboilingpoint,loweringofsolventvaporpressure,anddevelopmentofanosmoticpressure—arecalledcolligativepropertiesandtheydependonlyonthenumberconcentrationofthesoluteinsolutioninthelimitofinfinitedilution.Thus,beginningwithaknownmassofsolute,aknowledgeofanyofthesecolligativepropertiesrevealsthetotalnumberofmoleculesinsolution,which,inturn,allowscomputationofthenumber-averagemolecularweight.However,therelativemagnitudeoftheseeffectsissuchthatasthemolecularweightofthesoluteincreasesandthenumberofmoleculesinagivensamplemassdecreases,notallfourcolligativepropertiescanbemeasuredwithequalaccuracyorease;indeed,membraneosmometryisthemethodofchoiceformeasuringthenumber-averagemolecularweightofhighpolymers.Phaseequilibriumisthebasicprincipleusedtoobtainexpressionsforthemagnitudeofthedifferentcolligativeproperties.Itisknownfromthermo-dynamicsthatwhentwophasesareinequilibrium,thefugacity,^ff,ofagivencomponentisthesameineachphase.Thus,if,asshowninFigure8.1,purevaporA ... distribution as a function of the logarithm of thedegree of polymerization.Measurement of Molecular Weight 373Copyright © 2003 Marcel Dekker, Inc.eredlater)andifthesizeofthescatteringparticlesissmallcomparedtothewavelengthoftheincidentlight,thenwehavethefollowing[15]:IyI0¼2p2ð1þcos2yÞðdn=dcÞ2McNAl4r2ð8:4:1Þinwhichnistherefractiveindexofthegas,cisthemassconcentration,NAisAvogadro’snumber,andMisthemolecularweightoftheparticles.Accordingtothisequation,whichisknownastheRayleighequation,ifNisfixed,thescatteringintensityisproportionaltothesquareofthemolecularweightbecausecequalsNM=NA.Thus,iftherewereamixtureoftwokindsofparticles,withonekindbeingmuchlargerthantheother,thecontributionofthelargerparticlestothescatteredlightintensitywouldbethedominantone.Thisfactisusedtogreatadvantageindeterminingthemolecularweightofpolymericsolutesinsolution.Inthissituation,forlightscatteringfromanidealpolymersolution,Eq.(8.4.1)ismodifiedtoreadasfollows[15]:IyI0¼2p2ð1þcos2yÞn20ðdn=dcÞ2cNAl4r2=Mð8:4:2Þinwhichn0istherefractiveindexofthesolventandnnowbecomestherefractiveindexofthesolution,whereasMisthemolecularweightofthepolymerandcitsmassconcentration.Equation(8.4.2)isvalidonlyatinfinitedilution.Forfiniteconcentrations,theuseofavirialexpansionofthetypeintroducedinEq.(8.3.22)leadstoIyI0¼2p2ð1þcos2yÞn20ðdn=dcÞ2cNAl4r2ð1=Mþ2A2cþ3A3c2þÁÁÁÞð8:4:3ÞandEq.(8.4.3)properlyreducestoEq.(8.4.2)whenctendstozero.Formostpolymermolecules,thelimitationthattheparticlesizebemuchsmallerthanthewavelengthoflight,which,inpractice,meansthatallmoleculardimensionsshouldbelessthanl=20,istoorestrictive.Whentheparticlesizebecomescomparabletothewavelengthoftheincidentbeam,scatteringoccursfromdifferentpartsofthesamemolecule,resultingininterferenceduetophasedifferences.ThistendstoprogressivelyreduceIyasyincreases.TheresultcanbeseeninTable8.2,whichlistsdataforpolystyrene-in-toluenesolutions.However,because...
  • 34
  • 277
  • 0
Fundamentals of Polymer Engineering Part 10 docx

Fundamentals of Polymer Engineering Part 10 docx

... value of De or,equivalently, of the interaction parameter is needed to assure polymer polymer miscibility.Example 9.4: If the 1 g of polymer of Example 9.1 is diss olved in 9 g of adifferent polymer ... and composed of a series of segments the size of a solvent molecule.The number of segments in each polymer molecule is m, which equals V2=V1,theratio of the molar volume of the polymer to ... 1n0mÀ1ð9:3:2ÞThe total number of ways of arranging all of the n2 polymer molecules, Op,istheproduct of the number of ways of arranging each of the n2molecules in sequence.This...
  • 33
  • 406
  • 0
Fundamentals of Polymer Engineering Part 14 docx

Fundamentals of Polymer Engineering Part 14 docx

... Chapter 13 Copyright © 2003 Marcel Dekker, Inc. 13 PolymerDi¡usion 13. 1INTRODUCTIONInengineeringpractice,weroutinelyencounterthediffusionofsmallmoleculesthroughsolidpolymers,thediffusionofpolymermoleculesindiluteorconcen-tratedsolution,andthetransportofmacromoleculesthroughpolymermelts.WecameacrossdiffusionindilutesolutionwhenwedevelopedthetheoryoftheultracentrifugeinChapter8asamethodofdeterminingpolymermolecularweight. ... Inc.whichsaysthatMðtÞ=M1isauniquefunctionofDt=L2.Here,ierfcðxÞisgivenbyð1=ffiffiffippÞeÀx2Àxð1ÀerfxÞ.OnplottingEq. (13. 3.18),wefindthat[18,34]MðtÞM1¼2DtpL21=2 13: 3:19ÞuntilthepointthatMðtÞ=M1equals0.5.ThislinearrelationshiponlogarithmiccoordinatesfacilitatestheevaluationofDfromexperimentaldata.Detailsofhowwemightconductsuchexperimentsabovethepolymerglasstransitiontempera-turehavebeenprovidedbyDudaetal.[35].DudaandVrentashavealsoshownhowwemightdeterminetheconcentrationdependenceofdiffusioncoefficientsfromaminimumamountofdatafromsorptionexperiments[36].Equations (13. 3.18)and (13. 3.19)havebeenemployedbyShahetal.todeterminethediffusivityofwaterinvinylesternanocomposites[37].AsdiscussedinChapter11,nanocompositesaremadebydispersingplateletsofmontmorrilonite(clay)inpolymer,andFigure13.6,takenfromtheworkofShahetal.,showsindividualplateletsintheformofdarklines.Rectangularsamplesofthenanocompositewereimmersedin25Cwater,andtheincreaseinweightwasnotedwithincreasingtimeofimmersion.Representativesorptionresultsfornanocompositescontaining0.5wt%clayareshowninFigure13.7,and,asexpected,dataonsamplesofdifferentthicknessessuperposewhenplottedasMðtÞ=M1versust1=2=L.ThevalueofthediffusioncoefficientcomputedusingEq. (13. 3.19)canbeinsertedintoEq. (13. 3.18)togivethecompletetheoreticalcurve,andthisisalsoshowninFigure13.7;thefitbetweenFickiantheoryandexperimentisexcellent.Itisalsoremarkablethattheadditionofsuchaminuteamountofclayisfoundtoreducethemoisturediffusioncoefficientby50%.Inthecaseofadesorptionexperiment(duringthefinalstages),theequivalentformofEq. (13. 3.18)isgivenbythefollowing[18]:ddtfln½MðtÞÀM1g¼Àp2D4L2 13: 3:20Þandaplotofln½MðtÞÀM1versustimeshouldapproachastraightline,whoseslopeisgivenbytheright-handsideofEq. (13. 3.20).Theuseofthistechniquefordiffusivitymeasurementisillustratedinthenextexample.ExtensivedataonthediffusioncoefficientofgasesandvaporsinpolymerscanbefoundinthebookeditedbyCrankandPark[18,34].Example13.5:Figure13.8showsthegravimetricdataofSaleemetal.forthedesorption of chloroform from a 0.15-mm-thick film of ... þd2¼d22tdcAdx 13: 9:2ÞFIGURE 13. 17 Reptation in a polymer melt.FIGURE 13. 18 Model of the diffusion process.562 Chapter 13 Copyright © 2003 Marcel Dekker, Inc.Solution:TheslopeofthestraightlineinFigure13.8isln10À2Àln10À1ð120À70Þ60¼À7:68Â10À4andthismustequalÀp2D=ð0:015Þ2.Asaresult,D¼1:75Â10À8cm2=sec. 13. 4DIFFUSIVITYOFSPHERESATINFINITEDILUTIONTheoreticalpredictionofthediffusioncoefficientofspheresmovingthroughalow-molecular-weightliquidisaproblemthatwasexaminedbyEinsteinattheturnofthiscentury[39].Thissituationisofinteresttothepolymerscientistbecauseisolatedpolymermoleculesinsolutionactasrandomcoils.Theanalysisbeginsbyshowingthattheosmoticpressureisthedrivingforcefordiffusion.ThisisdonebycarryingouttheexperimentillustratedinFIGURE13.7Watersorptioncurveat25CforthenanocompositeshowninFig .13. 6.(From...
  • 47
  • 289
  • 0
Fundamentals of Polymer Engineering Part 15 doc

Fundamentals of Polymer Engineering Part 15 doc

... Inc.inwhichmandUareasyetunspecifiedfunctions,wegetthefactorableformoftheKaye–BKZequation[52,53]:~t¼ðtÀ1mðtÀt0Þ2@U@I1~CÀ1À2@U@I2~Cdt0ð14:10:23ÞBecausemandUareunspecifiedfunctions,ititpossibletopredictmostobservedrheologicalphenomenabypickingspecificfunctionalformsforthesequantities[7].AparticularformofEq.(14.10.23)thatdeservesspecialmentionistheoneresultingfromthetheoryofDoiandEdwards[54]andbasedonthereptationideaofdeGennes[32].Theseauthorsassumedthatupondeformationofthepolymer,stressrelaxationtookplacebytwoseparatemechanisms.Inthefirstinstancetherewasarapidretractionofthechainwithinthedeformedtube(seeFigure 13. 15ofChap .13) ,andinthesecondinstance,therewasslowdiffusionofthechain out of the original tube by the process of reptation. Within the confines of the ... Inc.adiscrete-relaxationtimespectrum,andwetypicallychoosebetweenoneandtworelaxationmodesperdecadeoffrequency.Figure14.14showsamastercurveofG0andG00valuesinatemperaturerangeof130–250Conaninjection-moldinggradesampleofpolystyrene;allofthedatahavebeencombinedbymeansofahorizontalshiftusingtime–temperaturesuperpositionwitha150CreferencetemperatureaccordingtotheprocedureofSection12.5.Thestress–relaxationmodulus(calculatedinthemannerofBaumgaertelandWinter)isdisplayedinFigure14.15alongwithactualstress–relaxationdataat150C;theagreementcouldnotbebetter.Theutilityofdynamicdataappearstogobeyondthetheoreticalapplica-tionsconsideredinthissection.Wefind,forexample,thatthemodulusofthecomplexviscosityZ*,definedasjZ*j¼½ðZ0Þ2þðZ00Þ21=2ð14:7:11ÞwhereZ0¼G00=oandZ00¼G0=o,whenplottedversusfrequency,oftensuper-poseswiththesteadyshearviscosityasafunctionoftheshearrate[19].ThisisknownastheCox–Merzrule,anditprovidesinformationaboutanonlinearpropertyfromameasurementofalinearproperty.NotethatZ0isgenerallycalledthedynamicviscosity.FIGURE14.14Mastercurveofstorageandlossmoduliofpolystyrene.Flow ... Inc.Ashear-thinningviscosityisnottheonlynon-Newtonianfeatureofthebehaviorofpolymericfluids;severalotherunusualphenomenaareobserved.If,inthesituationdepictedinFigure14.2,theshearrateissuddenlyreducedtozeroaftertheattainmentofasteadystate,low-andhigh-molecular-weightliquidsagainbehavedifferently.ThestressintheNewtonianfluidgoestozeroinstantly,butittakessometimetodisappearinthepolymer.Thetimescaleoverwhichthisstressrelaxationoccursisknownastherelaxationtimeandisdenotedbythesymboly.Additionally,ifasmall-amplitudesinusoidalstrainisimposedonthe polymer, theresultingstressisneitherinphasewiththestrainnoroutofphasewiththestrain:Thereisanout -of- phasecomponentrepresentingenergydissipa-tionandanin-phasecomponentrepresentingenergystorage(seeSect.12.4).Bothstressrelaxationandthephasedifferenceindynamicexperimentsareelasticeffects;wesaythatthepolymersarebothviscousandelastic(i.e.,viscoelastic).Intime-dependentflow,therelativeextentofthesetwoeffectsdependsonthevalueofthedimensionlessgroupknownastheDeborahnumber(De)anddefinedasfollows:De¼yTð14:1:1ÞwhereTisthecharacteristictimeconstantfortheprocessofinterest.ForlowvaluesofDe,thepolymerresponseisessentiallyliquidlike(viscous),whereasforhighvalues,itissolidlike(elastic).Afurthermanifestationofviscoelasticityistheswellingofajetofpolymeronemergingfroma‘‘die’’orcapillary.ThisisshowninFigure14.3.Dieswell,orjetswell,canbesuchthatDj=Deasilyexceeds2;thecorrespondingNewtonianvalueis1 .13. Thisistrueatverylowflowrates.Athighflowrates,dieswellreducesbutunstablebehaviorcalledmeltfracturecanoccur.Thejetcanbecomewavyorthesurfacecanbecomegrosslydistorted,assketchedinFigure14.4;theextentofdistortionisalsoinfluencedbythegeometryofthecapillary,itssurfacecharacter,andthepropertiesofthe polymer. NotethatmeltfractureisneverobservedwithNewtonianliquids.Thephenomenajustdescribedareinterestingtoobserveandexplain.Aquantitativedescriptionofthemis,however,essentialfordevelopingmodelsofFIGURE14.3Thedie-swellphenomenon.Flow...
  • 57
  • 252
  • 0
Fundamentals of Polymer Engineering Part 1 pdf

Fundamentals of Polymer Engineering Part 1 pdf

... Inc.6.4RecyclingandDegradationofPolymers2856.5Conclusion287Appendix6.1:SolutionofEquationsDescribingIsothermalRadicalPolymerization287References293Problems2947.EmulsionPolymerization2997.1Introduction2997.2AqueousEmulsifierSolutions3007.3SmithandEwartTheoryforStateIIofEmulsionPolymerization3047.4EstimationoftheTotalNumberofParticles,Nt 313 7.5MonomerConcentrationinPolymerParticles,[M]3157.6DeterminationofMolecularWeightinEmulsionPolymerization3197.7EmulsionPolymerizationinHomogeneousContinuous-FlowStirred-TankReactors3247.8Time-DependentEmulsionPolymerization3267.9Conclusions334References335Problems3368.MeasurementofMolecularWeightandItsDistribution3408.1Introduction3408.2End-GroupAnalysis3428.3ColligativeProperties3438.4LightScattering3508.5Ultracentrifugation3548.6IntrinsicViscosity3588.7GelPermeationChromatography3648.8Conclusion369References369Problems3719.ThermodynamicsofPolymerMixtures3749.1Introduction374xiv ... Inc.12.MechanicalProperties48712.1Introduction48712.2Stress-StrainBehavior48812.3TheGlassTransitionTemperature49712.4DynamicMechanicalExperiments50112.5Time-TemperatureSuperposition50412.6PolymerFracture50812.7CrazingandShearYielding51112.8FatigueFailure51612.9ImprovingMechanicalProperties518References520Problems523 13. PolymerDiffusion526 13. 1Introduction526 13. 2FundamentalsofMassTransfer527 13. 3DiffusionCoefficientMeasurement531 13. 4DiffusivityofSpheresatInfiniteDilution542 13. 5DiffusionCoefficientforNon-ThetaSolutions546 13. 6Free-VolumeTheoryofDiffusioninRubberyPolymers547 13. 7GasDiffusioninGlassyPolymers552 13. 8OrganicVaporDiffusioninGlassyPolymers:CaseIIDiffusion557 13. 9Polymer- PolymerDiffusion560 13. 10Conclusion564References565Problems56914.FlowBehaviorofPolymericFluids57314.1Introduction57314.2ViscometricFlows57614.3Cone-and-PlateViscometer57814.4TheCapillaryViscometer58414.5ExtensionalViscometers58914.6BoltzmannSuperpositionPrinciple59214.7DynamicMechanicalProperties59514.8TheoriesofShearViscosity598xvi ... Inc.12.MechanicalProperties48712.1Introduction48712.2Stress-StrainBehavior48812.3TheGlassTransitionTemperature49712.4DynamicMechanicalExperiments50112.5Time-TemperatureSuperposition50412.6PolymerFracture50812.7CrazingandShearYielding51112.8FatigueFailure51612.9ImprovingMechanicalProperties518References520Problems523 13. PolymerDiffusion526 13. 1Introduction526 13. 2FundamentalsofMassTransfer527 13. 3DiffusionCoefficientMeasurement531 13. 4DiffusivityofSpheresatInfiniteDilution542 13. 5DiffusionCoefficientforNon-ThetaSolutions546 13. 6Free-VolumeTheoryofDiffusioninRubberyPolymers547 13. 7GasDiffusioninGlassyPolymers552 13. 8OrganicVaporDiffusioninGlassyPolymers:CaseIIDiffusion557 13. 9Polymer- PolymerDiffusion560 13. 10Conclusion564References565Problems56914.FlowBehaviorofPolymericFluids57314.1Introduction57314.2ViscometricFlows57614.3Cone-and-PlateViscometer57814.4TheCapillaryViscometer58414.5ExtensionalViscometers58914.6BoltzmannSuperpositionPrinciple59214.7DynamicMechanicalProperties59514.8TheoriesofShearViscosity598xvi...
  • 17
  • 1,345
  • 1
Fundamentals of Polymer Engineering Part 2 pdf

Fundamentals of Polymer Engineering Part 2 pdf

... molecular structure of the graft copolymer and the number of grafts formed. In addition, the length of the graft may vary, and the graftcopolymer often carries a fair amount of homopolymer.The ‘‘graft-onto’’ ... classification of polymers is based on molecularstructure. According to this system, the polymer could be one of the following:1. Linear-chain polymer 2. Branched-chain polymer 3. Network or gel polymer It ... Inc.values.TheendchemicalgroupsXandYcouldbethesameordifferent,andwhattheyaredependsonthechemicalreactionsinitiatingthepolymerformation.Uptothispoint,ithasbeenassumedthatalloftherepeatunitsthatmakeupthebodyofthepolymer(linear,branched,orcompletelycross-linkednetworkmolecules)areallthesame.However,iftwoormoredifferentrepeatunitsmakeupthischainlikestructure,itisknownasacopolymer.Ifthevariousrepeatunitsoccurrandomlyalongthechainlikestructure,thepolymeriscalledarandomcopolymer.Whenrepeatunitsofeachkindappearinblocks,itiscalledablockcopolymer.Forexample,iflinearchainsaresynthesizedfromrepeatunitsAandB,apolymerinwhichAandBarearrangedasiscalledanABblockcopolymer,andoneofthetypeiscalledanABAblockcopolymer.Thistypeofnotationisusedregardlessofthemolecular-weightdistributionoftheAandBblocks[7].Thesynthesisofblockcopolymerscanbeeasilycarriedoutiffunctionalgroupssuchasacidchloride(COCl),amines(...
  • 44
  • 304
  • 0
Fundamentals of Polymer Engineering Part 3 ppsx

Fundamentals of Polymer Engineering Part 3 ppsx

... Inc.higherthehardnessandmodulus.Anotherfactorthatplaysamajorroleindeterminingthefinalpropertyofthepolymeristhechemicalnatureofthesurface.Mineralfillerssuchascalciumcarbonateandtitaniumdioxidepowderoftenhavepolarfunctionalgroups(e.g.,hydroxylgroups)onthesurface.Toimprovethewettingproperties,theyaresometimestreatedwithachemicalcalledacouplingagent.Couplingagentsarechemicalsthatareusedtotreatthesurfaceoffillers.Thesechemicalsnormallyhavetwoparts:onethatcombineswiththesurfacechemicallyandanotherthatiscompatiblewiththepolymer.Oneexampleisthetreatmentofcalciumcarbonatefillerwithstearicacid.Theacidgroupofthelatterreactswiththesurface,whereasthealiphaticchainsticksoutofthesurfaceandiscompatiblewiththepolymermatrix.Inthesameway,ifcarbonblackistobeusedasafiller,itisfirstmixedwithbenzoylperoxideinalcoholat45Cforatleast50handsubsequentlydriedinvacuumat11C[5].ThisactivatedcarbonhasbeenidentifiedashavingCÀOHbonds,whichcanleadtopolymerizationofvinylmonomers.Thepolymerthusformedischemicallyboundtothefillerandwouldthuspromotethecompatibilizationofthefillerwiththepolymermatrix.Mostofthefillersareinorganicinnature,andthesurfaceareaperunitvolumeincreaseswithsizereduction.Thenumberofsiteswherepolymerchainscanbeboundincreases,and,consequently,compatibilityimprovesforsmallparticles.Forinorganicfillers,silanesalsoserveascommoncouplingagents.SomeofthesearegiveninTable2.1.Themechanismofthereactionconsistsoftwosteps; ... Rosen, S. L., Fundamental Principles of Polymeric Materials, Wiley–Interscience,New York, 1982.3. Kumar, A., and S. K. Gupta, Fundamentals of Polymer Science and Engineering, TataMcGraw-Hill, New ... isfound to reduce with the degree of acetylation, the latter imparting higher strengthto the polymer. The main usage of the polymer is in the preparation of films andsheets. Films are used...
  • 58
  • 272
  • 0
Fundamentals of Polymer Engineering Part 5 ppsx

Fundamentals of Polymer Engineering Part 5 ppsx

... application of a vacuum in order to obtain a polymer Reaction Engineering of Step-Growth Polymerization 169Copyright © 2003 Marcel Dekker, Inc.The total pressure PTis then the sum of partial ... condensation polymerization of two monomers A and B thatdo not mix. In such cases, the monomers diffuse to the interface andpolymerize there. Find the molecular weight of the polymer in terms of thediffusivities ... consistent with the equilibrium of polymerization. Try the formgiven in Eq. (3.5.2) first.4 .13. The rate of evaporation, Nw, of condensation product at y ¼ 0 in the film of Figure4.7isgivenbyNNw¼ðtft¼0D@W@yjy¼0dtAlso...
  • 35
  • 263
  • 0

Xem thêm

Từ khóa: handbook of shaft alignment part 13 pdffundamentals of systems engineeringfundamentals of requirements engineeringfundamentals of engineering thermodynamics 10th editionfundamentals of wireless communication engineering technologiesdoctor who the end of time youtube part 1fundamentals of wireless communication engineering technologies k daniel wongfundamentals of wireless communication engineering technologies downloadfundamentals of wireless communication engineering technologies pdf15 tr thermal analysis fundamentals and applications to polymer science part 7 potthermal analysis fundamentals and applications to polymer science part 4thermal analysis fundamentals and applications to polymer science part 6thermal analysis fundamentals and applications to polymer science part 8the elements of style part 1 docfundamentals of engineering thermodynamicsBáo cáo thực tập tại nhà thuốc tại Thành phố Hồ Chí Minh năm 2018Báo cáo quy trình mua hàng CT CP Công Nghệ NPVNghiên cứu tổ chức pha chế, đánh giá chất lượng thuốc tiêm truyền trong điều kiện dã ngoạiNghiên cứu vật liệu biến hóa (metamaterials) hấp thụ sóng điện tử ở vùng tần số THzGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitQuản lý hoạt động học tập của học sinh theo hướng phát triển kỹ năng học tập hợp tác tại các trường phổ thông dân tộc bán trú huyện ba chẽ, tỉnh quảng ninhPhối hợp giữa phòng văn hóa và thông tin với phòng giáo dục và đào tạo trong việc tuyên truyền, giáo dục, vận động xây dựng nông thôn mới huyện thanh thủy, tỉnh phú thọPhát hiện xâm nhập dựa trên thuật toán k meansNghiên cứu, xây dựng phần mềm smartscan và ứng dụng trong bảo vệ mạng máy tính chuyên dùngĐịnh tội danh từ thực tiễn huyện Cần Giuộc, tỉnh Long An (Luận văn thạc sĩ)Sở hữu ruộng đất và kinh tế nông nghiệp châu ôn (lạng sơn) nửa đầu thế kỷ XIXTổ chức và hoạt động của Phòng Tư pháp từ thực tiễn tỉnh Phú Thọ (Luận văn thạc sĩ)BT Tieng anh 6 UNIT 2Tăng trưởng tín dụng hộ sản xuất nông nghiệp tại Ngân hàng Nông nghiệp và Phát triển nông thôn Việt Nam chi nhánh tỉnh Bắc Giang (Luận văn thạc sĩ)Giáo án Sinh học 11 bài 15: Tiêu hóa ở động vậtNguyên tắc phân hóa trách nhiệm hình sự đối với người dưới 18 tuổi phạm tội trong pháp luật hình sự Việt Nam (Luận văn thạc sĩ)Giáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtChiến lược marketing tại ngân hàng Agribank chi nhánh Sài Gòn từ 2013-2015MÔN TRUYỀN THÔNG MARKETING TÍCH HỢPTÁI CHẾ NHỰA VÀ QUẢN LÝ CHẤT THẢI Ở HOA KỲ