Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 9 ppt
... Hint 7 . 19 Hint 7.20 Hint 7. 21 Hint 7.22 Hint 7.23 Hint 7.24 Hint 7.25 1. (z 2 + 1) 1/ 2 = (z − ı) 1/ 2 (z + ı) 1/ 2 2. (z 3 − z) 1/ 2 = z 1/ 2 (z − 1) 1/ 2 (z + 1) 1/ 2 3. log (z 2 − 1) = log(z − 1) + ... z 1 = z 2 = 1. Arg(( 1) ( 1) ) = Arg (1) = 0, Arg( 1) + Arg( 1) = 2π Log(( 1) ( 1) ) = Log (1) = 0, Log( 1) + Log( 1) = ı2π 306 sign. This will change the value of arcco...
Ngày tải lên: 06/08/2014, 01:21
... a and b are orthogonal, (perpendicular), or one of a and b are zero. 26 1 2 1 2 2 4 6 8 10 1 2 Figure 1. 11: Plots of f(x) = p(x)/q(x). 1. 6 Hints Hint 1. 1 area = constant ×diameter 2 . Hint 1. 2 A ... from 1 to n and are called free indices. Example 2 .1. 1 Consider the matrix equation: A · x = b. We can write out the matrix and vectors explicitly. a 11 ··· a 1n...
Ngày tải lên: 06/08/2014, 01:21
... ( 1) n 1 (n − 1) !, for n ≥ 1. By Taylor’s theorem of the mean we have, ln x = (x − 1) − (x − 1) 2 2 + (x − 1) 3 3 − (x − 1) 4 4 + ··· + ( 1) n 1 (x − 1) n n + ( 1) n (x − 1) n +1 n + 1 1 ξ n +1 . 72 3.8 ... are f 1 (x) = 1 f 2 (x) = 1 + x f 3 (x) = 1 + x + x 2 2 f 4 (x) = 1 + x + x 2 2 + x 3 6 The four approximations are graphed in Figure 3 .11 . -1 -0.5...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 4 pptx
... thumb: 12 1 c. ln lim x→+∞ 1 + 1 x x = lim x→+∞ ln 1 + 1 x x = lim x→+∞ x ln 1 + 1 x = lim x→+∞ ln 1 + 1 x 1/ x = lim x→+∞ 1 + 1 x 1 − 1 x 2 1/ x 2 = lim x→+∞ 1 + 1 x 1 = ... [ 1, 1] and 1 ≤ cos(x 0 ) ≤ 1, the approximation sin x ≈ x − x 3 6 + x 5 12 0 has a maximum error of 1 5040 ≈ 0.00 0 19 8. U...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 7 ppt
... y. (See Figure 7 .9. ) In modulus -2 -1 0 1 2 x -2 -1 0 1 2 y -2 -1 0 1 2 -2 -1 0 1 2 x -2 -1 0 1 2 x -2 -1 0 1 2 y -2 -1 0 1 2 -2 -1 0 1 2 x Figure 7 .9: The real and imaginary parts of f(z) = z ... y 2 . 250 -2 -1 0 1 2 x -2 -1 0 1 2 y -5 0 5 -2 -1 0 1 2 x -2 -1 0 1 2 y Figure 7 .10 : A few branches of arg(z). -2 -1 0 1 2 x -2 -1 0 1...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 8 ppt
... arguments: 1. log( 1) = log 1 1 = log (1) − log( 1) = −log( 1) , therefore, log( 1) = 0. 2. 1 = 1 1/2 = (( 1) ( 1) ) 1/ 2 = ( 1) 1/ 2 ( 1) 1/ 2 = ıı = 1, therefore, 1 = 1. Hint, Solution Exercise 7 .11 Write ... Cartesian form. Denote any multi-valuedness explicitly. 2 2/5 , 3 1+ ı , √ 3 − ı 1/ 4 , 1 ı/4 . Hint, Solution 287 -2 -1 0 1 2 x -2 -1 0 1 2 y 0 0.5...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 9 ppt
... c n k =1 (z −z k ). Let m be 696 2. − 1 1 1 x 3 dx = lim →0 + − 1 1 x 3 dx + 1 1 x 3 dx = lim →0 + − 1 2x 2 − 1 + − 1 2x 2 1 = lim →0 + − 1 2(−) 2 + 1 2( 1) 2 − 1 2 (1) 2 + 1 2 2 = ... zero. Solution 13 .10 1. − 1 1 1 x 2 dx = lim →0 + − 1 1 x 2 dx + 1 1 x 2 dx = lim →0 + − 1 x − 1 + −...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 1 pdf
... . . . 19 10 43 .10 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 11 44 Transform Methods 19 18 44 .1 Fourier Transform for Partial ... . . . . . 10 04 18 .10 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 06 19 Transformations and Canonical Forms...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 5 pdf
... 0 = π 4 14 9 a = 1 (0 − 1) (0 − 2)(0 − 3) = − 1 6 b = 1 (1) (1 − 2) (1 − 3) = 1 2 c = 1 (2)(2 − 1) (2 − 3) = − 1 2 d = 1 (3)(3 − 1) (3 − 2) = 1 6 1 x(x − 1) (x − 2)(x − 3) = − 1 6x + 1 2(x − 1) − 1 2(x ... lim δ→0 + 1 δ 0 1 (x − 1) 2 dx + lim →0 + 4 1+ 1 (x − 1) 2 dx Hint 4 .18 1 0 1 √ x dx = lim →0 + 1 1 √ x dx Hint 4 . 19...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 6 pps
... values. For instance, (1 2 ) 1/ 2 = 1 1/2 = 1 and 1 1/2 2 = ( 1) 2 = 1. Example 6.6.2 Consider 2 1/ 5 , (1 + ı) 1/ 3 and (2 + ı) 5/6 . 2 1/ 5 = 5 √ 2 e ı2πk/5 , for k = 0, 1, 2, 3, 4 19 9 Example ... w (s) m|w (s)| . 17 8 Example 6.5.2 Consider (5 + ı7) 11 . We will do the exponentiation in polar form and write the result in Cartesian form. (5 + ı7) 11...
Ngày tải lên: 06/08/2014, 01:21