Data Analysis Machine Learning and Applications Episode 1 Part 4 pptx

Data Analysis Machine Learning and Applications Episode 1 Part 4 pptx

Data Analysis Machine Learning and Applications Episode 1 Part 4 pptx

... 0.89 642 0.763 84 0. 712 12 0.85838 ¯r 0.5 313 0 0 .4 41 1 9 0.56066 0 .44 540 0 .45 403 0.39900 0. 618 83 0. 747 30 ccr 98.22% 98.00% 94. 44% 90.67% 97 .11 % 89.56% 98.89% 98 .44 % 11 a 0. 043 35 0. 043 94 0.00 012 0. 043 88 ... 0. 547 46 0.6 013 9 0.27 610 0 .46 735 0.58050 0 .49 842 0.33303 0.5 017 8 b 0. 910 71 0. 848 88 0 .48 550 0.73720 0. 813 17 0.79 644 0.72899 0. 744 62 6 a 0. 6...

Ngày tải lên: 05/08/2014, 21:21

25 393 0
Data Analysis Machine Learning and Applications Episode 1 Part 1 doc

Data Analysis Machine Learning and Applications Episode 1 Part 1 doc

... able2 14 4 42 32 8 44 46 2 24 38 9 11 20 16 15 6 21 50 13 30 27 49 1 5 29 28 34 7 35 22 3 31 37 48 12 26 39 10 45 17 23 25 75 98 18 43 36 33 19 47 90 70 82 71 41 40 57 78 94 84 58 88 79 59 55 51 91 73 85 64 61 65 62 80 96 89 83 95 10 0 63 54 74 92 53 72 87 76 93 97 66 81 69 67 99 11 3 68 86 56 60 77 52 13 9 13 4 13 0 10 3 13 8...

Ngày tải lên: 05/08/2014, 21:21

25 342 0
Data Analysis Machine Learning and Applications Episode 1 Part 2 potx

Data Analysis Machine Learning and Applications Episode 1 Part 2 potx

... Cal P ANN ,1 v–rest,Dirichlet 0.973 0.963 0. 815 0.809 0.9 71 0.952 P LDA 0.980 0.972 0. 713 0.737 0.862 0.835 P QDA 0.980 0.969 0.7 71 0.7 61 0. 9 14 0.866 P Logistic Regression 0.973 0.9 64 0.5 61 0.633 0. 843 ... I z j ,6 j 0.000 0 .4 41 0.8 21 0.8 71 CC MK G CC = M ·Kf T j = I z j ,6 j 0.000 0.0 54 0. 217 0.8 01 LLDA J = 5, n = 500 - 0.000 0.0 31 0.207 0.869 MDA S k = M - 0.00...

Ngày tải lên: 05/08/2014, 21:21

25 387 0
Data Analysis Machine Learning and Applications Episode 1 Part 3 docx

Data Analysis Machine Learning and Applications Episode 1 Part 3 docx

... 20 40 60 80 10 0 12 0 14 0 16 0 18 0 200 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 200 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 200 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 200 Fig. 2. Problem fourclass (Schoelkopf and ... 3.87 77.30 46 .67 2 28.83 88. 41 18.06 2.50 1 68. 54 7 .44 2. 54 0.00 SRNG 1 2 3 4 4 0.00 0.56 2.08 53.33 3 0.67 3.60 81. 12 44 .17 2 28....

Ngày tải lên: 05/08/2014, 21:21

25 541 0
Data Analysis Machine Learning and Applications Episode 1 Part 5 pdf

Data Analysis Machine Learning and Applications Episode 1 Part 5 pdf

... dendrograms Q 2 0 1 3 4 12 20 32 64 0 f 0022256 1 0 f 10 0000 3 01f 00 000 4 200f 342 2 12 2003f 322 20 20 04 3 f 21 32 5002 2 2 f 5 64 6002 2 1 5 f Fig. 1. 2-adic valuations for D. 0 1 0 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 0 64 32 4 20 12 ... 0.382 Indonesia 0. 616 0 . 14 4 0. 240 Italy 0. 044 0.950 0.006 Japan 0 .13 4 0. 846 0.020 Norway 0.08...

Ngày tải lên: 05/08/2014, 21:21

25 352 0
Data Analysis Machine Learning and Applications Episode 1 Part 6 docx

Data Analysis Machine Learning and Applications Episode 1 Part 6 docx

... data. grandfather 0.000 0.0 24 0. 012 0.965 0.000 grandmother 0.005 0 .13 4 0. 016 0. 840 0.005 granddaughter 0 .11 3 0. 242 0.0 54 0 .46 6 0 .12 5 grandson 0 .13 4 0 .11 1 0.052 0.5 81 0 .12 2 brother 0. 612 0.282 0.0 24 0.082 0.000 sister 0.579 ... 0.3 91 0.026 0.002 0.002 father 0.099 0. 546 0 .12 2 0 .15 8 0.075 mother 0.089 0.6 54 0 .13 6 0.0 54 0.066 daughter 0.000 1. 00...

Ngày tải lên: 05/08/2014, 21:21

25 378 0
Data Analysis Machine Learning and Applications Episode 1 Part 7 doc

Data Analysis Machine Learning and Applications Episode 1 Part 7 doc

... parameter S = 0.75, mean vectors z 1 =(0,0, 0)  , z 2 =(3,5,8)  , and covariance matrices 6 1 = ⎛ ⎝ 3.02 .42 .4 2 .43 .02 .1 2 .42 .11 .3 ⎞ ⎠ , 6 2 = ⎛ ⎝ 4. 02 .42 .4 2 .43 .52 .1 2 .42 .13 .2 ⎞ ⎠ . In the second setting, ... bias MSE S.Cov Length NM 0.0 015 0. 04 31 93.8% 0 .16 04 M 2 0.0052 0. 043 7 94. 0% 0 .16 61 M 3 0.0 043 0. 043 5 94. 0% 0 .16 51 M 4 0.0059 0. 044 2...

Ngày tải lên: 05/08/2014, 21:21

25 359 0
Data Analysis Machine Learning and Applications Episode 1 Part 8 ppsx

Data Analysis Machine Learning and Applications Episode 1 Part 8 ppsx

... ∗umbh+ 0 .13 35∗tie+ 0.20 41 textiles+ 0. 211 4 bag +0 .17 91 wat + 0 .12 92∗mous+ 0.08 81 scul+ 0.2322∗pens (1) 13 8 Christian Hennig and Pietro Coretto CAMPBELL, N. A. (19 84) : Mixture models and atypical ... % Umbre =1 Umbre=2 Umbre=3 Umbre =4 Keyri =1 Keyri=2 Keyri=3 Keyri =4 Tie =1 Tie=2 Tie=3 Tie =4 Hat =1 Hat=2 Hat=3 Hat =4 Kerf1 =1 Kerf1=2 Kerf1=3 Kerf1 =4 Kerf2 =1...

Ngày tải lên: 05/08/2014, 21:21

25 476 0
Data Analysis Machine Learning and Applications Episode 1 Part 9 doc

Data Analysis Machine Learning and Applications Episode 1 Part 9 doc

... B 0 = B and Y 0 = Y the design and response data matrices, respec- tively. Define t 1 = B 0 w 1 and u 1 = Y 0 c 1 as the first MAPLSS components, where the weighting unit vectors w 1 and c 1 are ... La Revue de Modulad, 31, 1 31. D’ AMBRA, L. and LAURO, N. (19 89): Non symetrical analysis of three-way contingency tables. Multiway Data Analysis, 3 01 315 . ESCOFIER...

Ngày tải lên: 05/08/2014, 21:21

25 316 0
Data Analysis Machine Learning and Applications Episode 1 Part 10 ppt

Data Analysis Machine Learning and Applications Episode 1 Part 10 ppt

... 1 1 1 1 ∗ c4–g4 1 1 1 1 1 c4–a4 1 1 1 1 1 c4–c5 1 1 0 1 ∗ 1 instrument notes flu guit pian trum viol c4–c4 0 0 1 ∗ 1 ∗ 1 c4–e4 1 1 1 1 1 ∗ c4–g4 1 1 1 1 1 c4–a4 1 1 1 1 1 c4–c5 1 1 1 ∗ 1 ∗ 1 4. 3 ... viol c4–c4 1 1 1 1 1 c4–e4 0 1 0 0 1 c4–g4 0 0 0 0 0 c4–a4 1 1 1 0 0 c4–c5 1 1 1 1 1 instrument notes flu guit pian trum v...

Ngày tải lên: 05/08/2014, 21:21

25 298 0
w