Trong tương lai, sẽ tiếp tục nghiên cứu, so sánh và cải thiện phương pháp để có thể áp dụng cho các thuộc tính có giá trị liên tục và cho kết quả phân loại có độ chính xác cao hơn nữa.
TÀI LIỆU THAM KHẢO
[1]. B. Liu, W. Hsu and Y. Ma. Integrating Classification and association rule mining. In KDD ’98, New York, NY, Aug. 1998.
[2]. CBA: http://www.comp.nus.edu.sg/~dm2/p_download.html
[3]. F. Thabtah, P. Cowling , and Y. Peng. MMAC: A New Multi-class, Multi-label Associative Classification Approach. Brighton, UK : To be Appear in theProceedings of the Fourth IEEE International Conference on Data Mining (ICDM ‘04), November 2004.
[4]. J. Furnkranz. Separate-and-conquer rule learning. Technical Report TR- 96-25, Austrian Research Institute for Artificial Intelligence, Vienna, 1996.
[5]. Jiawei Han, Micheline Kamber, Jian Pei. Data Mining Concepts and Techniques, Third Edition. s.l. : The Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann Publishers, July 2011. p. 329.
[6]. J.R. Quinlan. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, San Francisco, 1993.
[7]. J.R. Quinlan. Generating production rules from decision trees. In Proceeding of the 10th International Joint Conferences on Artificial Intelligence, Morgan Kaufmann, San Francisco, 1987, pp. 304-307.
[8]. J.R. Quinlan. Induction of Decision Trees. Machine Learning 1, Mar. 1986. pp. 81-106.
[9]. Merz, C. J. and Murphy, P. M.UCI Repository of Machine Learning Databases. Irvine, CA : University of California, Department of Information and Computer Science, 1996.
[10]. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In Proceedings of the 3rd KDD Conference, Aug. 1997, pp.283-286
[11]. R. Duda, P. Hart, and D. Strok. Pattern classification.Wiley, 2001. [12]. R. Schapire and Y. Singer, "BoosTexter:A boosting-based system for text categorization", Machine Learning, vol. 39, no. 2/3, 2000, pp. 135-168.
[13]. T. Joachims. Text categorisation with Support Vector Machines: Learning with many relevant features. In Proceeding Tenth European Conference on Machine Learning, 1998, pp. 137-142.
[14]. T. S. Lim, W. Y. Loh and Y. S. Shih. A comparison of prediction accuracy, complexity and training time of thirtythree old and new classification algorithms. Machine Learning, 39, 2000.
[15]. W. Li, J. Han and J. Pei. CMAR: Accurate and efficient classification based on multiple class association rule. In ICDM’01, San Jose, CA, Nov. 2001, pp. 369-376.
[16]. Weka: Data Mining Software in Java: http://www.cs.waikato.ac.nz/ml/weka
[17]. William W.Cohen. Fast Effective Rule Induction. Machine Learning: Proceedings of the Twelfth International Conference, 1995
[18]. X. Yin and J. Han. CPAR: Classification based on predictive association rule. In SDM 2003, San Francisco, CA, May 2003.
[19]. Y. Yang. An evaluation of statistical approaches to text categorisation. Technical Report CMU-CS-97-127, Carnegie Mellon University, April 1997.
[20]. Yongqiang Cao, Jianhong Wu. Projective ART for clustering data sets in high dimensional spaces. Elsevier Science Ltd, Neural Networks 15, 2002. pp. 105-120.
[21]. Zhang, M.-L., Zhou, Z.-H., A k-nearest neighbor based algorithm for multi-label classification. Beijing, China: Proceeding of the 1st IEE International Conference on Granular Computing (GrC 2005), 2005. pp. 718-721