CHUYÊN ẹỀ 10 – TÍNH CHIA HẾT ẹỐI VễÙI ẹA THệÙC A Dáng 1: Tỡm dử cuỷa pheựp chia maứ khõng thửùc hieọn pheựp chia

Một phần của tài liệu de thi khao sat ki II (Trang 45)

C. Vaọn dúng vaứo caực baứi toaựn khaực

CHUYÊN ẹỀ 10 – TÍNH CHIA HẾT ẹỐI VễÙI ẹA THệÙC A Dáng 1: Tỡm dử cuỷa pheựp chia maứ khõng thửùc hieọn pheựp chia

A. Dáng 1: Tỡm dử cuỷa pheựp chia maứ khõng thửùc hieọn pheựp chia

1. ẹa thửực chia coự dáng x – a (a laứ haống) a) ẹũnh lớ Bụdu (Bezout, 1730 – 1783):

Soỏ dử trong pheựp chia ủa thửực f(x) cho nhũ thửực x – a baống giaự trũ cuỷa f(x) tái x = a Ta coự: f(x) = (x – a). Q(x) + r

ẹaỳng thửực ủuựng vụựi mói x nẽn vụựi x = a, ta coự f(a) = 0.Q(a) + r hay f(a) = r

Ta suy ra: f(x) chia heỏt cho x – a ⇔ f(a) = 0

b) f(x) coự toồng caực heọ soỏ baống 0 thỡ chia heỏt cho x – 1

c) f(x) coự toồng caực heọ soỏ cuỷa háng tửỷ baọc chaỹn baống toồng caực heọ soỏ cuỷa caực háng tửỷ baọc leỷ thỡ chia heỏt cho x + 1

Vớ dú : Khõng laứm pheựp chia, haừy xeựt xem A = x3 – 9x2 + 6x + 16 chia heỏt cho B = x + 1, C = x – 3 khõng

Keỏt quaỷ:

A chia heỏt cho B, khõng chia heỏt cho C 2. ẹa thửực chia coự baọc hai trụỷ lẽn

Caựch 1: Taựch ủa thửực bũ chia thaứnh toồng cuỷa caực ủa thửực chia heỏt cho ủa thửực chia vaứ dử Caựch 2: Xeựt giaự trũ riẽng: gói thửụng cuỷa pheựp chia laứ Q(x), dử laứ ax + b thỡ

f(x) = g(x). Q(x) + ax + b

Hệ số của đa thức chia Hệ số thứ 2 của đa thức bị chia + Hệ số thứ 1đa thức bị chia a

Vớ dú 1: Tỡm dử cuỷa pheựp chia x7 + x5 + x3 + 1 cho x2 – 1 Caựch 1: Ta bieỏt raống x2n – 1 chia heỏt cho x2 – 1 nẽn ta taựch: x7 + x5 + x3 + 1 = (x7 – x) + (x5 – x) +(x3 – x) + 3x + 1

= x(x6 – 1) + x(x4 – 1) + x(x2 – 1) + 3x + 1 chia cho x2 – 1 dử 3x + 1 Caựch 2:

Gói thửụng cuỷa pheựp chia laứ Q(x), dử laứ ax + b, Ta coự: x7 + x5 + x3 + 1 = (x -1)(x + 1).Q(x) + ax + b vụựi mói x ẹaỳng thửực ủuựng vụựi mói x nẽn vụựi x = 1, ta coự 4 = a + b (1) vụựi x = - 1 ta coự - 2 = - a + b (2)

Tửứ (1) vaứ (2) suy ra a = 3, b =1 nẽn ta ủửụùc dử laứ 3x + 1 Ghi nhụự:

an – bn chia heỏt cho a – b (a ≠ -b)

an + bn ( n leỷ) chia heỏt cho a + b (a ≠ -b) Vớ dú 2: Tỡm dử cuỷa caực pheựp chia a) x41 chia cho x2 + 1 b) x27 + x9 + x3 + x cho x2 – 1 c) x99 + x55 + x11 + x + 7 cho x2 + 1 Giaỷi a) x41 = x41 – x + x = x(x40 – 1) + x = x[(x4)10 – 1] + x chia cho x4 – 1 dử x nẽn chia cho x2 + 1 dử x b) x27 + x9 + x3 + x = (x27 – x) + (x9– x) + (x3 – x) + 4x = x(x26 – 1) + x(x8 – 1) + x(x2 – 1) + 4x chia cho x2 – 1 dử 4x c) x99 + x55 + x11 + x + 7 = x(x98 + 1) + x(x54 + 1) + x(x10 + 1) – 2x + 7 chia cho x2 + 1 dử – 2x + 7 TRƯỜNG THCS TIẾN THẮNG

Một phần của tài liệu de thi khao sat ki II (Trang 45)

Tải bản đầy đủ (DOC)

(116 trang)
w