Chọn hàm truyền

Một phần của tài liệu Tiểu luận môn Máy học và ứng dụng MẠNG NƠRON & ỨNG DỤNG TRONG VIỆC NHẬN DẠNG CHỮ VIẾT (Trang 29)

Không phải bất kỳ hàm truyền nào cũng cho kết quả như mong muốn. Để trả lời cho câu hỏi «hàm truyền như thế nào được coi là tốt ? » là điều không hề đơn giản. Có một số quy tắc khi chọn hàm truyền như sau:

♦ Không dùng hàm truyền tuyến tính ở tầng ẩn. Vì nếu dùng hàm truyền tuyến tính ở tầng ẩn thì sẽ làm mất vai trò của tầng ẩn đó: Xét tầng ẩn thứ i: Tổng trọng số ni = wiai-1+ bi ai = f(ni) = wf ni +bf (hàm truyền tuyến tính) Khi đó: tổng trọng số tại tầng thứ (i + 1) ni+1= wi+1ai + bi+1 = wi+1[wf ni +bf] + bi+1 = wi+1[wf(wiai-1+ bi) + bf] + bi+1 = Wai-1+ b

Như vậy ni+1= Wai-1+ b, và tầng i đã không còn giá trị nữạ

♦ Chọn các hàm truyền sao cho kiến trúc mạng nơron là đối xứng (tức là với đầu vào ngẫu nhiên thì đầu ra có phân bố đối xứng). Nếu một mạng nơron không đối xứng thì giá trị đầu ra sẽ lệch sang một bên, không phân tán lên toàn bộ miền giá trị của output. Điều này có thể làm cho mạng rơi vào trạng thái bão hòa, không thoát ra được.

Trong thực tế người ta thường sử dụng các hàm truyền dạng – S. Một hàm s(u) được gọi là hàm truyền dạng – S nếu nó thỏa mãn 3 tính chất sau:

– s(u) là hàm bị chặn: tức là tồn tại các hằng số C1 ≤ C2 sao cho: C1 ≤ s(u) ≤ C2 với mọi ụ

– s(u) là hàm đơn điệu tăng: giá trị của s(u) luôn tăng khi u tăng. Do tính chất thứ nhất, s(u) bị chặn, nên s(u) sẽ tiệm cận tới giá trị cận trên khi u dần tới dương vô cùng, và tiệm cận giá trị cận dưới khi u dần tới âm vô cùng.

– s(u) là hàm khả vi: tức là s(u) liên tục và có đạo hàm trên toàn trục số. Một hàm truyền dạng - S điển hình và được áp dụng rộng rãi là hàm Sigmoid.

Một phần của tài liệu Tiểu luận môn Máy học và ứng dụng MẠNG NƠRON & ỨNG DỤNG TRONG VIỆC NHẬN DẠNG CHỮ VIẾT (Trang 29)

Tải bản đầy đủ (DOCX)

(45 trang)
w