3 SÜ TÇN TI TP HÓT TON CÖC
3.2 Tr÷íng hñp khæng ætænæm:
Chóng ta nhc l¤i mët sè ành ngh¾a v mët sè k¸t qu£ l°p cõa c¡c h m (f(s, .), g(., s)) = σ(s) ÷ñc gåi l mët °c tr÷ng cõa (1.1). Ta x²t b i to¡n (1.1) vîi mët hå σ(s + h) = (f(s + h, .), g(., s + h)) v giîi h¤n cõa d¢y
σ(s+ hn) n∈
N trong khæng gian tæpæ Σ. Hå cõa méi d¤ng nh÷ vªy ÷ñc gåi l bao cõa σ trong Σ v ÷ñc k½ hi»uH(σ), tùc l :
H(σ) =clΣ{σ(.+h)|h ∈ R}.
N¸u bao H(σ) l mët tªp compact trong Σ, ta nâi r¬ng σ l compact dàch chuyºn trong Σ.
K½ hi»u: Rd = (t, τ) ∈ R2|τ ≤ t . Gåi X l khæng gian metric ¦y õ, P(X) v B(X) l tªp t§t c£ c¡c tªp con kh¡c réng v tªp t§t c£ c¡c tªp con kh¡c réng bà ch°n cõa X. Gi£ sû Z l khæng gian con cõa Σ k½ hi»u:
Z = ϕ ∈ C(R;R) : |ϕ(u)| ≤ Cϕ(1 +|u|q−1), vîi Cϕ > 0 ,
||ϕ||Z = sup
u∈R
|ϕ(u)| 1 +|u|q−1.
Khi â Z l mët khæng gian Banach. Ta câ fn →f trong khæng gian
C(R;Z) n¸u: lim n→∞ sup s∈[t,t+r] ||fn(s, .)−f(s, .)||Z = 0. (3.2) vîi måi t∈ R, r > 0. Gi£ sû f0 ∈ C(R;Z), g0 ∈ L2loc,w(R;L2(Ω)) v H(f0) = clC(R;Z){f0(.+h)|h ∈ R}, H(g0) =clL2,w loc(R;L2(Ω)){g0(.+h)|h ∈ R},
trong â tæpæ trong L2loc,w(R;L2(Ω)) ÷ñc trang bà bði tành hëi tö y¸u to n cöc, tùc l : gn → g trong Lloc2,w(R;L2(Ω)) n¸u
lim n→∞ t+r Z t Z Ω (gn(s, x)−g(s, x))φ(x, s)dsdx = 0
vîi måi t∈ R, r > 0. v ϕ∈ L2(Qt,t+r). Ta k½ hi»u Σ = H(f0)× H(g0).
M»nh · 3.2.1. [8] H m f ∈ C(R;Z) l compact dàch chuyºn n¸u v ch¿ n¸u ∀R >0 ta câ:
(1) |f(t, v)| ≤ C(R),∀t∈ R, v ∈ [−R, R],
(2) |f(t1, v1)−f(t2, v2)| ≤ α(|t1 −t2|+|v1 −v2|, R),∀t1, t2 ∈ R, v1, v2 ∈ [−R, R], vîi C(R) > 0 v α(., .) l mët h m thäa m¢n α(s, R) → 0 khi
Tø b¥y gií ta luæn gi£ sû f l h m compact dàch chuyºn. Còng vîi
g l h m compact dàch chuyºn trong L2loc,w(R;L2(Ω)) , ta th§y r¬ng Σ l tªp compact trong L2loc,w(R;L2(Ω)), khi â tø [8] ta câ:
T(h) : Σ →Σ l li¶n töc v T(h)Σ ⊂ Σ,∀h ∈ R.
ành ngh¾a 3.2.2. [21] nh x¤ U : Rd ×X → P(X)÷ñc gåi l nûa dáng a trà (MSP) n¸u
(1)U(τ, τ, .) = Id ( nh x¤ çng nh§t )
(2)U(t, τ, x) ⊂U(t, s, U(s, τ, x)),∀x ∈ X, t, sτ ∈ R, τ ≤s ≤ t.
U ÷ñc gåi l nûa qu¡ tr¼nh a trà ng°t n¸uU(t, τ, x) = U(t, s, U(s, τ, x)).
Ta k½ hi»u tªp Dτ,σ(uτ)l tªp t§t c£ c¡c nghi»m y¸u to n cöc (÷ñc ành ngh¾a vîi ∀t ≥ τ ) cõa b i to¡n (1.1) vîi (fσ, gσ) thay cho (f, g) sao cho u(τ) = uτ. Vîi méi σ = (f, g) ∈ Σ ta x²t hå MSP {Uσ : σ ∈ Σ} ÷ñc ành ngh¾a bði
Uσ(t, τ, uτ) = {u = u(t)|u(.) ∈ Dτ,σ(uτ)}.
Bê · 3.2.3. Uσ(t, τ, uτ) l mët nûa qu¡ tr¼nh a trà. Hìn núa
Uσ(t+ s, τ +s, uτ) =UT(s)σ(t, τ, uτ),∀uτ ∈ L2(Ω),(t, τ) ∈ Rd, s ∈ R.
Chùng minh. Cho z ∈ Uσ(t, τ, uτ) ta ph£i chùng minh r¬ng:
z ∈ Uσ(t, s, Uσ(s, τ, uτ)). Gåi y(.) ∈ Dτ,σ(uτ) sao choy(τ) = uτ v y(t) =
z. Rã r ng y(s) ∈ Uσ(s, τ, uτ). Khi â n¸u ta ành ngh¾a z(t) = y(t) vîi
t ≥ s ta th§y r¬ng z(s) = y(s) v hiºn nhi¶n z(.) ∈ Ds,σ(y(s)). Do dâ
z(t) ∈ Uσ(t, s, Uσ(s, τ, uτ)).
°t z ∈ Uσ(t+ s, τ + s, uτ). Khi â tçn t¤i u(.) ∈ Dτ+s,σ(uτ) sao cho
z = u(t+s)v v(.) = u(.+s) ∈ Dτ,T(s)σ(uτ), do âz = v(t) ∈ Uτ,T(s)σ(uτ). Ng÷ñc l¤i , z ∈ Uτ,T(s)σ(uτ) tø â z ∈ Dτ,T(s)σ(uτ) sao cho z = u(t) v
v(.) =u(−s+.) ∈ Dτ+s,σ(uτ) v¼ vªy z = v(t+s) ∈ Uσ(t+s, τ +s, uτ).
K½ hi»u UΣ(t, τ, x) = S
σ∈Σ
Uσ(t, τ, x).
ành ngh¾a 3.2.4. [21] Tªp hñp A ÷ñc gåi l tªp hót to n cöc ·u èi vîi c¡c nûa qu¡ tr¼nh a trà UΣ n¸u:
(1)A l nûa b§t bi¸n ¥m, tùc l A ⊂ UΣ(t, τ,A),∀t ≥ τ;
v τ ∈ R;
(3) vîi måi tªp hót âng ·u Y, ta câ A ⊂ Y (t½nh cüc tiºu).
ành lþ 3.2.5. [21] Gi£ sû r¬ng hå c¡c nûa qu¡ tr¼nh a trà UΣ thäa m¢n nhúng i·u ki»n sau:
(1) Tr¶n Σ câ mët to¡n tû dàch chuyºn li¶n töc T(s)σ(t) = σ(t+s),∀s ∈
R sao cho T(h)Σ ⊂ Σ v vîi méi (t, τ) ∈ Rd, σ ∈ Σ, s ∈ R, x ∈ X ta câ:
Uσ(t+s, τ + s, x) =UT(s)σ(t, τ, x);
(2)Uσ l nûa compact ti»m cªn tr¶n ·u; (3)UΣ l ti¶u hao iºm;
(4) nh x¤ (x, σ) 7→Uσ(t,0, x) câ gi¡ trà âng l w - nûa li¶n töc tr¶n. Khi â, hå c¡c nûa qu¡ tr¼nh a trà UΣ câ tªp hót compact to n cöc ·u A.
Bê · 3.2.6. N¸u c¡c i·u ki»n (H1) - (H3) ÷ñc thäa m¢n v {un}n∈ N l mët d¢y nghi»m y¸u cõa (1.1) vîi nhúng °c tr÷ng li¶n quan d¢y {σn} ⊂ Σ sao cho:
(1)un(τ) → uτ trong L2(Ω)) (2)σn → σ trong Σ
Khi â tçn t¤i mët nghi»m u cõa b i to¡n (1.1) vîi °c tr÷ng σ sao cho u(τ) =uT v un(t∗) → u(t∗) trong L2(Ω)) vîi méi t∗ > τ.
Chùng minh. : Gi£ sû σn = (fn, gn). V¼ f thäa m¢n (H1), ∀t ∈ R v
fn ∈ H(f) ta th§y r¬ng fn công thäa m¢n (H1). M°t kh¡c, chó þ r¬ng {un(τ)} bà ch°n trong L2(Ω)) v ||gn||L2 b ≤ |g||L2 b. Do â, lþ luªn t÷ìng tü nh÷ trong ành l½ 2.2.1, ta câ: {un} bà ch°n trong V = Lp(τ, T, D01,γ,p(Ω))∩Lq(τ, T;Lq(Ω)), {u0n} bà ch°n trong V0 = Lp0(τ, T, D−−γ1,p0(Ω)) +Lq0(τ, T;Lq0(Ω)), {un} bà ch°n trong C([τ, T];L2(Ω)), {fn(t, un)} bà ch°n trong Lq0(Qτ,T), {−∆p,γun} bà ch°n trong Lp0(τ, T;D−−γ1,p0(Ω)). Tø â ta câ: un(t) * u(t) trong L2(Ω),∀t ∈ [τ, T],
°tσn → σ = ( ¯f ,g¯) trong Σ, ta th§y r¬ng u l mët nghi»m cõa b i to¡n (1.1) vîi °c tr÷ng σ sao cho u(τ) = uT, l§y giîi h¤n ¯ng thùc sau ta
÷ñc: T Z τ Z Ω (u0nv +|x|−pγ|∇un|p−2∇un∇v+ fn(t, un)v)dxdt = T Z τ Z Ω gnvdxdt ∀v ∈ V. Do gn * ¯g trong L2(τ, T;L2(Ω)) n¶n fn(t, un) * f¯(t, u) trong
Lq0(Qτ,T). ¦u ti¶n ta ch¿ ra r¬ng fn(t, un) →f¯(t, u) trong Lq0(Qτ,T). Thªt vªy: T R τ R Ω |fn(t, un)−f¯(t, un)|q0dxdt = T R τ R Ω |fn(t, un)−f¯(t, un)|q0 (1 +|un|q−1)q0 (1 +|un|q−1)q0dxdt ≤ sup [τ,T] ||fn −f¯||Z q0 T R τ R Ω (1 +|un|q)dxdt → 0. V¼ fn → f¯ trong Z v {un} bà ch°n trong Lq(Qτ,T). M°t kh¡c, do f¯(t, u
n) bà ch°n trong Lq0(Qτ,T), sû döng bê · 1.3 trong [[18] ch÷ìng 1] v t½nh li¶n töc cõa f¯nh÷ trong chùng minh ành lþ 2.2.1, ta th§y r¬ng
¯
f(t, un) →f¯(t, u) y¸u trong Lq0(Qτ,T). Do â ta câ:
fn(t, un)−f¯(t, u) = (fn(t, un)−f¯(t, un))+( ¯f(t, un)−f¯(t, u)) →0 y¸u trong Lq0(Qτ,T).
B¥y gií ta ch¿ ra r¬ng u∗n → u(t∗) trong L2(Ω) vîi méi t∗ > τ. º câ ÷ñc
un(t) * u(t) trong L2(Ω),∀t ∈ [τ, T],
ta ph£i kiºm tra r¬ng ||un(t∗)||L2(Ω) → ||u(t∗)||L2(Ω).
°t: Jn(t) =||un(t)||2L2(Ω) −2 t Z τ (gn(s), un(s))ds−(2k2|Ω|+ 2λ)(t−τ), J(t) = ||u(t)||2L2(Ω) −2 t Z τ (g(s), u(s))ds−(2k2|Ω|+ 2λ)(t−τ).
[τ, T]. ¦u ti¶n ta ch¿ ra r¬ng:Jn(t) →J(t) h¦u khp nìi vîi t ∈ [τ, T], Thªt vªy, |Jn(t)−J(t)| ≤ ||un(t)||2 L2(Ω) − ||u(y)||2 L2(Ω) + 2 t R τ [(gn(s), un(s))−(g(s), u(s))]ds ≤ ||un(t)−u(t)||L2(Ω)(||un(t)||L2(Ω) − ||u(t)||L2(Ω)) + 2 t R τ [gn(s), un(s)−u(s)]ds + 2 t R τ [gn(s)−g(s), u(s)]ds v t Z τ [gn(s), un(s)−u(s)]ds ≤ ||gn||L2(Qτ,t)||un(t)−u(t)||L2(Ω) → 0
khi n → ∞ v un → u m¤nh trong L2(Qτ,t) v {gn} bà ch°n trong
L2(Qτ,t). Ngo i ra, Rt
τ
[gn(s)− g(s), u(s)]ds → 0 khi n → ∞ v gn * g
trong L2(Qτ,t). Do â Jn(t) → J(t) h¦u khp nìi vîi t∈ [τ, T]. Thüc t¸ l un(t) → u(t) trong L2(Ω) h¦u khp nìi vîi t ∈ [τ, T].
Ta chån mët d¢y khæng t«ng {tm} ⊂ [τ, T], tm → t∗ sao cho Jn(tm) * J(tm) khi n → ∞. Khi â, do t½nh li¶n töc Jn(tm) * Jn(t∗) khi m → ∞.
Vªy: Jn(t∗)−J(t∗) ≤Jn(tm)−J(t∗) = Jn(tm)−J(tm) +J(tm)−J(t∗) < ε vîi n≥ n0(ε) v ε > 0 b§t k¼. Do â lim supJn(t∗) ≤ J(t∗) v do â lim sup||un(t∗)|| ≤ ||u(t∗)||
Tø sü hëi tö y¸u un(t∗) * u(t∗) ta câ ||un(t∗)|| → ||u(t∗)|| do vªy
ành lþ 3.2.7. Gi£ sû c¡c i·u ki»n (H1) - (H3) ÷ñc thäa m¢n. Khi â hå c¡c nûa qu¡ tr¼nh a trà {Uσ(t, τ)} câ mët tªp hót to n cöc ·u A.
Chùng minh. Ta bi¸t r¬ng vîi méi σn = (fn, gn) ∈ Σ thäa m¢n c¡c i·u ki»n (H1) - (H2).
Tø gn ∈ H(g), ta câ ||gn||L2
b ≤ ||g||L2
b. Do â n¸u un l mët nghi»m y¸u cõa b i to¡n (1.1) vîi σn ta câ:
||un(t)||2L2
Ω ≤ ||un(τ)||2L2(Ω)e−λ(t−τ)+ 1
λ(1−e−λ)||g||2L2
b + 2k2|Ω|
λ + 2
Tø b§t ¯ng thùc tr¶n ta th§y r¬ng tçn t¤i mët sèR0 sao cho n¸uun(τ) ∈
BR, h¼nh c¦u trong L2Ω t¥m O b¡n k½nh R th¼ tçn t¤i T0 = T0(τ, R) sao cho un(t) ∈ BR0,∀t ≥T0,
ta câ UΣ(t, τ, BR) ⊂ BR0,∀t ≥ T0(τ, R). Do â {Uσ(t, τ)} thäa m¢n i·u ki»n (3) trong ành lþ 3.2.5
Ta ành ngh¾a tªp hñp K = UΣ(1,0, BR0). Tø bê · 3.2.6 ta câ K l compact.
Hìn núa, v¼ BR0 l tªp h§p thö , ta câ:
Uσn(t, τ, BR) =Uσn(t, t−1, Uσn(t−1, τ, BR))
= UT(t−1)σn(1,0, UT(τ)σn(t− 1−τ,0, BR)) ⊂ UΣ(1,0, BR0) ⊂
K,∀σn ∈ Σ, BR ∈ B(L2(Ω)) v t≥ T0(τ, BR).
Tø â vîi b§t k¼ d¢y {ξn} thäa m¢n {ξn} ∈ Uσn(tn, τ, BR0), σn ∈ Σ, tn → +∞, BR ∈ B(L2(Ω)) l ti·n compact trong L2(Ω).
Nâ l mët h» qu£ cõa bê · 3.2.6 ¡nh x¤ Uσ câ gi¡ trà compact vîi b§t k¼ σ ∈ Σ
Cuèi còng, ta chùng minh ¡nh x¤(σ, x) 7→ Uσ(t, τ, x) l nûa li¶n töc tr¶n vîi méi t≥ τ.
Gi£ sû i·u â l khæng óng ngh¾a l tçn t¤i u¯ ∈ L2(Ω), t ≥ τ,σ¯ ∈ Σ, ε > 0, δn → 0, un ∈ Bδn(¯u), σn → σ,¯ v ξn ∈ Uσn(t, τ, un) sao cho {ξn} ∈/ Bε(Uσ¯(t, τ,u¯))
Tuy nhi¶n bê · 3.2.6 l¤i l ξn → ξ ∈ U¯σ(t, τ,u¯) i·u â m¥u thu¨n. Do â, theo ành l½ 3.2.5 v bê · 3.2.6 ta k¸t luªn hå c¡c nûa qu¡ tr¼nh a trà {Uσ(t, τ)} câ mët tªp hót to n cöc ·u A.
KT LUN
Trong luªn v«n n y, chóng tæi ¢ nghi¶n cùu v tr¼nh b y chi ti¸t chùng minh sü tçn t¤i nghi»m y¸u cõa b i to¡n (1.1)v sü tçn t¤i tªp hót to n cöc èi vîi mët lîp ph÷ìng tr¼nh parabolic phi tuy¸n chùa to¡n tû Caffarelli - Kohn - Nirenberg. K¸t qu£ ch½nh ÷ñc nghi¶n cùu trong luªn v«n l :
1. Chùng minh sü tçn t¤i nghi»m y¸u cõa b i to¡n (1.1).
2. Chùng minh sü tçn t¤i tªp hót to n cöc èi vîi b i to¡n tr¶n trong tr÷íng hñp ætænæm v khæng ætænæm.
H÷îng nghi¶n cùu ti¸p theo, èi vîi b i to¡n n y chóng ta câ thº nghi¶n cùu ti¸p t½nh li¶n thæng v sè chi·u cõa tªp hót cõa ph÷ìng tr¼nh parabolic trong c£ hai tr÷íng hñp ætænæm v khæng ætænæm.
T i li»u tham kh£o
[1] Cung Th¸ Anh (2012), Cì sð lþ thuy¸t h» ëng lüc væ h¤n chi·u, ¤i håc s÷ ph¤m, H Nëi.
[2] Abdellaoui, B, Colorado, E, Peral, I: Existence and nonexistence results for a class of linear and semi-linear parabolic equations re- lated to some Caffarelli-Kohn-Nirenberg inequalities. J Eur Math Soc.6, 119148 (2004).
[3] A. V. Babin (2006), Global Attractors in ADE, Hasselblatt, B.(ed.) et al., Handbook of dynamical system. Volume 1B. Amsterdam: Ele- sevier. 938-1085.
[4] A.V. Babin and M.I. Vishik (1992), Attractors of Evolution Equa- tions Transl. from the Russian by A.V. Babil,Studies in Mathemat- ics and its Applications. 25 Amsterdam etc. North- Holland. 532 p.
[5] Caffarelli, L, Kohn, R, Nirenberg, L: First order interpolation in- equalities with weights. Compositio Math.53, 259275 (1984). [6] C.-K. Zhong, M.-H. Yang, and C.-Y. Sun(2006), The existence of
global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, Journal of Differential Equations, vol. 223, no. 2, pp. 367399.
[7] Chepyzhov, VV, Vishik, MI: Attractors for Equations of Mathe- matical Physics. In Am Math Soc Colloq Publ Am Math Soc, vol. 49,Providence, RI (2002).
[8] Chepyzhov, VV, Vishik, MI: Evolution equations and their trajec- tory attractor. J Math Pure Appl.76, 913964 (1997).
[9] C. T. Anh, P. Q. Hung, T. D. Ke, and T .T. Phong(2008), Global attractors for a semilinear parabolicequation involving Grushin op- erator, Electronic Journal of Differential Equations, no. 32, pp. 1- 11.
[10] C. T. Anh and T.T Phong (2009), Global attractors for a semilinear parabolic equations involving weighted p-Laplacian operators, Ann. Pol.Math. 98, 251-271.
[11] C. T. Anh and N.V. Quang (2011), Uniform attractors for nonau- tonomous parabolic equation involving Grushin operator, Acta Math. Vietnam.36, no. 1,19-33.
[12] Dall'aglio, A, Giachetti, D, Peral, I: Results on parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities. SIAM Math Anal.36, 691716 (2004).
[13] J. C. Robinson(2001), Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge,UK.
[14] J. M. Arrieta, A.N. Carvalho and A. Rodiriguez-Bernal (2000), Up- per semicontinuity for attractors of parabolic problems with local- ized large diffusion and nonlinear boundary conditions, J. Differ- ential Equations 168, 533-559.
[15] J. M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodriguez-Bernal (2004), Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal. 56,515;554. [16] Kapustyan, AV: Global attractors of a nonautonomous reaction-
diffusion equation. Diff Equ38(10):14671471 (2002). [Translation from Differensial Uravneniya 38(10), 1378-1381 (2002)].
[17] Kapustyan, AV, Shkundin, DV: Global attractor of one nonlinear parabolic equation. Ukrain Math Zh.55, 446455 (2003).
[18] Lions, JL: Quelques M²thodes de R²solution des Probl±mes aux Limites Non Lin²aires. Dunod, Paris (1969).
[19] Melnik, VS, Valero, J: Addendum to On attractors of multi-valued semiflows and differential inclusions. Set Valued Anal. 16, 507509 (2008).
[20] Melnik, VS, Valero, J: On attractors of multi-valued semiflows and differential inclusions. Set Valued Anal.6,83111 (1998).
[21] Melnik, VS, Valero, J: On global attractors of multi-valued semipro- cesses and nonautonomous evalution inclusions. Set Valued Anal.8, 375403 (2000).
[22] Morillas, F, Valero, J: Attractors for reaction-diffusion equations in with continuous nonlinearity. Asymptot Anal.44, 111130 (2005). [23] N.D.Binh and C.T.Anh: Attractors for parabolic equations related
to Caffarelli-Kohn-Nirenberg inequalities. Boundary Value Prob- lems. 1-19 (2012).
[24] Rosa, R: The global attractor for the 2D Navier-Stokes flow on some unbounded domains. Nonlinear Anal.32,7185 (1998).
[25] R. Temam (1997), Infinite-Dimensional Dynamical Systems in Me- chanics and Physics, 2nd edition, Springer-Verlag.
[26] Temam, R: Navier-Stokes Equations and Nonlinear Functional Analysis.SIAM (series lectures), Philadelphia, 2 (1995).
[27] Valero, J, Kapustyan, A: On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems. J Math Anal Appl.323, 614633 (2006).
[28] V.V. Chepyzhov and M.I. Vishik (2002), Attractors for Equations of Mathematical Physics. Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc, Providence, RI.