a. Tính các giá trị của hàm số tại x =
2
1 và x = -3
b. Tìm các giá trị của x khi f(x) = 2 và f(x) = 14
Bài 3 : (1,5 điểm) Vẽ parabol y = - x2/2 (P) : và đường thẳng (D) : y = 3x trờn cựng một hệ trục tọa độ. Tỡm tọa độ cỏc giao điểm của (P) và (D) bằng phộp tớnh.
Bài 4 :Cho y=( m−5−2).x2 a)Vẽ đồ thị hàm số với m=6
b)Tìm m để hàm số đồng biến với x<0
c)Tìm m để đồ thị của hàm số đi qua A( -2:12)
Bài 5 Cho ( P): y=-x2. Đờng thẳng y =m cắt ( P) tại A; B. Tìm m để tam giác AOB đều và tính diện tích tam giác ABO.
Bài 6 : Cho Parabol ( P) : 2 4 1 x y = và đờng thẳng(d): 2 2 1 + − = x y a) Vẽ ( P) và ( d) trên cùng hệ trục toạ độ.
b) Gọi A, B là các giao điểm của ( P) và ( d). Tìm M trên cung AB của ( P) sao cho S
MA B
lớn nhất
c) Tìm N trên trục hoành sao cho NA+NB nhỏ nhất
Bài 7 : Cho Parabol ( P): y=3x2 trong hệ trục toạ độ Oxy. Tìm m để đ ờng thẳng y=x+m cắt ( P’) tại hai điểm phân biệt A, B sao cho OA vuông góc với OB
Bài 8 : Cho Parabol y = 2 2 1
x
− và điểm M(1, -2).
1. Chứng minh rằng: Ph ơng trình đờng thẳng đi qua M có hệ số góc là k luôn cắt Parabol tại 2
điểm phân biệt A, B với ∀k.
b. Gọi x A, x B lần lợt là hoành độ của A và B, xác định k để 2 2 2 ( ) B A B A B A x x x x x x + − + đạt giá trị lớn nhất. Tìm giá trị ấy. Bài 9 : Vẽ đồ thị hàm số : y = - x2/4 (P) và đường thẳng (D) : y = 2x + 3 trờn cựng một hệ trục tọa độ. Tỡm tọa độ cỏc giao điểm của (P) và (D) bằng phộp tớnh.
Bài 10 : Cho hàm số y = ax2 (1)
a) Xác định a biết đồ thị của (1) đi qua điểm A( 2 ;2 2)
b) Vẽ đồ thị hàm só (1) với a vừa tìm đ ợc.
c) Tìm giá trị lớn nhất của hàm số khi x ∈ [ - 2 ; 0 ] ; x ∈ [ 0 ; 2 ] .
d) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số khi x ∈ [ - 3 ; 3 ] .
Bài 11 : Cho hai hàm số 1 2
y x và y 2x 2
2
= = − .
b) Tìm tọa độ giao điểm của hai đồ thị.
Bài 12** : Tam giác đều AOB nội tiếp trong một parabol y = ax2 đỉnh O là gốc tọa độ và đáy AB song song với trục Ox, A và B nằm trên parabol. Hãy tính tung độ của điểm B.
Bài 13 : Cho đờng thẳng (d): y = k(x - 1) và parabol (P): y = 1 2
x
2 . Với giá trị nào của k thì (d):
a) Tiếp xúc với (P).
b) Cắt (P) tại một điểm có tung độ là 2 và hoành độ d ơng. Tìm tọa độ các giao điểm của (P) và (d).
KHI CHứNG MINH HìNH CầN KHAI THáC GIả THIếT
Và PHÂN TíCH ĐI LÊN Từ KếT LUậN A.Khai thác giả thiết
-Khi chứng minh Hình cần khai thác những điều có đ ợc từ đầu bài ,những điều đã chứng minh đợc.Đặc biệt cần chú ý những điều sau:
I.Nếu có điểm thuộc đ ờng tròn thì nghĩ tới
1, Các bán kính bằng nhau 2, Tứ giác nội tiếp
3,Các góc với đờng tròn.Đặc biệt nếu có đờng kính thì sẽ có góc vuông
II. Nếu có Tứ giác nội tiếp thì nghĩ tới
1,Các góc đối bù nhau
2, 4 cặp góc nội tiếp bằng nhau(nếu nối 2 đờng chéo)
3, Góc trong bằng góc ngoài ở đỉnh đối( Phải chứng minh)
4, Điểm thuộc đờng tròn
5, Bài toán “Phơng tích” ( Nếu có giao điểm 2 đờng chéo hoặc 2 cạnh đối)
III. Nếu có Tiếp tuyến thì nghĩ tới
1,Các tính chất Vuông góc , cách đều , phân giác 2, Góc tạo bởi tia tiếp tuyến và dây cung