Ta có góc MBA =góc NEB (phụ với góc MBE).

Một phần của tài liệu Các bài hình học tổng hợp lớp 9 dùng ôn thi lớp 10 rất hay có đáp án chi tiết (Trang 33)

Ta lại chứng minh được tam giác AMC = tam giác BNC (c.g.c) suy ra góc MCA = góc NCB do góc MCA = góc MBA nên góc NCB = góc NEB do đó tứ giác BNCE nội tiếp suy ra góc BCE = góc BNE = 900. Mà góc ACB = 900suy ra ba điểm A, C, E thẳng hàng.

Bài 52. Cho đường tròn (O) đường kính AB = 2R và điểm M di động trên nửa đường tròn(M không trùng A, B). Vẽ đường tròn tâm I tiếp xúc trong với (O) tại M và tiếp xúc với đường kính AB tại N. Đường tròn này cắt MA, MB lần lượt tại C và D.

a) Chứng minh: C, I, D thẳng hàng.

b) Chứng minh: Tứ giác ACDB là hình thang và MN là phân giác của góc AMB. c) Chứng minh: MN luôn đi qua điểm cố định K và tích KM.KN không đổi khi M di động.

d) Gọi giao điểm của NC và ND với đường thẳng KB và KA lần lượt tại P và Q. Chứng minh tứ giác NPKQ là hình chữ nhật. Xác định vị trí của M để diện tích tứ giác NPKQ là lớn nhất, tính diện tích lớn nhất của tứ giác này theo R?

Q P P K D C N O B A M I

a) ta có góc AMB = 900(góc nội tiếp chắn nửa đường tròn) suy ra góc CMD = 900, do đó CD là đường kính (I) suy ra CD đi qua I.

b) (O) và (I) tiếp xúc trong nên M, I, O thẳng hàng. Ta có MI = ID suy ra góc IMD = góc IDM, tam giác OBM cân tại O nên góc OMB = góc OBM do đó góc IDM = góc OBM suy ra CD // AB suy ra tứ giác ACDB là hình thang.

AB tiếp xúc với (I) nên IN vuông góc với AB do CD // AB nên IN vuông góc với CD do đó cung CN = cung ND suy ra MN là phân giác góc AMB.

c) do góc AMB = 900, mà MN là phân giác góc AMB nên góc AMK = góc BMK = 450 suy ra K là điểm chính giữa cung AB cố định.

Tam giác KNA đồng dạng với tam giác KAM suy ra KM.KN = KA2không đổi. d) góc KNP = góc CNM = góc CDM = góc ABM = góc MKA suy ra MP//KQ, tương tự NQ // KP suy ra tứ giác NPKQ là hình bình hành, lại có góc QNP = góc CND = 900 nên tứ giác NPKQ là hình chữ nhật.  2 2 NPKQ NP NQ AK S NQ.NP 4 4 

   (Vì NQ = AQ) do AK không đổi nên

NPKQS không đổi S không đổi NPKQ S =  2 2 2R 2 AK R 4  4  2

Bài 53. Cho tam giác ABC vuông tại đỉnh A, đường cao AH. Đường tròn đường kính AH, tâm O, cắt các cạnh AB và AC lần lượt tại E và F. Gọi M là trung điểm của cạnh HC.

a) Chứng minh AE.AB = AF.AC.

b) Chứng minh rằng MF là tiếp tuyến của đường tròn đường kính AH. c) Chứng minh HAM HBO  .

d) Xác định điểm trực tâm của tam giác ABM.

K F F E A B H C O M

c) Chứng minh HAM HBO  .

Xét hai tam giác AHMBHOcó  AHM BHO 900

Trong tam giác vuông ABC,đường caoAH

2 . .2 .2 AH HM

AH HB HC AH OH HB HM

HB HO

     Suy ra HBOHAM

Suy ra  HAM HBO

Gọi K là giao điểm của AMvới đường tròn Ta có HBO HAM MHK    , suy raBO// HK

HK AM , suy ra BO AM , suy ra O là trực tâm của tam giácABM

Bài 54.Cho tam giác ABC nhọn, nội tiếp đường tròn (O).Đường thẳng AO cắt đường tròn (O) tại M ( MA). Đường thẳng qua C vuông góc với AB cắt đường tròn (O ) tại N ( NC). Gọi K là giao điểm MN với BC.

a) Chứng minh tam giác KCN cân. b) Chứng minh OK vuông góc với BM.

c) Hai tiếp tuyến của đường tròn (O) tại M và N cắt nhau tại P. Chứng minh ba điểm P, B, O thẳng hàng. P K O C A B M N

c)Hai tiếp tuyến của đường tròn (O) tại M và N cắt nhau tại P. Chứng minh ba điểm P, B, O thẳng hàng.

+) ta có BNM  BAM (cung MB) (5) +) BMN  BCN ( Cung NB) (6)

+) BAM  NCB ( do cùng phụ với góc ABC) (7) +) từ (5), (6) &(7) suy ra BNM  BMN nên BMBN

+)mà gt ta có ONOM & PMPN nên ba điểm P ,B,O nằm trên đường trung trực đoạn MN vậy P,B,O thẳng hàng.

Bài 55.Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K.

1) Chứng minh rằng: EFMK là tứ giác nội tiếp. 2) Chứng minh rằng: AI2= IM .IB.

3) Chứng minh BAF là tam giác cân.

4) Chứng minh rằng : Tứ giác AKFH là hình thoi.

X 2 2 1 2 1 E K I H F M B O A

Một phần của tài liệu Các bài hình học tổng hợp lớp 9 dùng ôn thi lớp 10 rất hay có đáp án chi tiết (Trang 33)

Tải bản đầy đủ (PDF)

(46 trang)