2.5.3.1. Can nhiễu khác tuyến
Các tuyến thông tin vệ tinh có thể bị nhiễu trong các trường hợp như sau: + Tuyến viba mặt đất đến vệ tinh thông tin.
+ Tuyến viba mặt đất đến trạm mặt đất. + Vệ tinh thông tin khác đến trạm mặt đất.
+ Can nhiễu giữa viba và trạm mặt đất: Có hai trường hợp
Trường hợp thứ nhất, đường thông tin viba mặt đất có cùng tần số làm việc với đường lên của hệ thống thông tin vệ tinh, bởi vậy tín hiệu viba mặt đất được trộn với tín hiệu ở đầu vào máy thu vệ tinh.
Trường hợp thứ hai, đường thông tin vi ba mặt đất có tần số bằng tần số đường xuống của hệ thống thông tin vệ tinh, bởi vậy ở đầu vào máy thu trạm mặt đất cũng bị trộn với tín hiệu của đường thông tin viba mặt đất .
Trong thiết kế tuyến thực tế, phải đặt trạm mặt đất sao cho nhiễu xảy ra ít nhất, nhiễu nhỏ nhất bằng cách sử dụng anten có các đặc tính búp phụ tốt. Mặc dù
Trạm mặt đất. Trạmviba.
Quỹ đạo địa tĩnh
mục tiêu cơ bản thiết kế tuyến đối với vệ tinh thông tin là để loại bỏ nhiễu, nếu điều này không thể thực hiện được thì trong thiết kế tuyến phải bao hàm cả lượng nhiễu cho phép. Nhiễu thường không thể đánh giá được bằng tính toán, ví dụ như trong thành phố có nhiều vật cản phản xạ quanh nơi đặt trạm mặt đất. Vì thế phải dùng phương pháp đo thực tế để đo nhiễu.
+ Sự can nhiễu từ vệ tinh thông tin khác đến trạm mặt đất.
Hình 2.8. cho ta thấy can nhiễu xảy ra do các vệ tinh đặt gần nhau. Ta xem xét tín hiệu can nhiễu từ vệ tinh 1 tác động lên trạm mặt đất 2 và tín hiệu can nhiễu từ vệ tinh 2 tác động lên trạm mặt đất 1. Khi góc θ càng nhỏ ( tương ứng với 2 vệ tinh đặt càng gần nhau) thì ảnh hưởng của chúng lên trạm mặt đất càng lớn.
Trong thực tế, tỷ số công suất của sóng mang trên sóng can nhiễu C/N giữa các vệ tinh có thể lớn hơn hoặc bằng 30dB (1000 lần) khi hai vệ tinh đặt cách nhau khoảng 30 ngay trên quỹ đạo, ngay cả nếu các anten của chúng cùng chiếu vào cùng một vị trí.
2.5.3.2. Nhiễu cùng tuyến
Nhiễu có thể tạo ra ngay trong tuyến, gọi là nhiễu cùng tuyến, bao gồm : - Tạp âm nhiễu khử phân cực
Loại nhiễu này thường xảy ra trong hệ thống thông tin phân cực kép, nó bị
θ θ
Vệ tinh 1 Vệ tinh 2
Trạm mặt đất 2
Quỹ đạo vệ tinh
Đường liền nét biểu thị đường đi của tín hiệu mong muốn.
Đường đứt nét biểu thị đường đi của tín hiệu can nhiễu.
Hình 2.8. Can nhiễu giữa các hệ thống thông tin vệ tinh
anten có XPD (khả năng phân biệt phân cực chéo) lớn, thường thì XPD của anten khoảng 30dB, nhưng ở tần số 10GHz thì XPD của anten lại giảm do mưa.
-Tạp âm nhiễu kênh lân cận.
Nhiễu này gây ra bởi kênh lân cận có cùng phân cực với tuyến vệ tinh đang xét. Có thể triệt nhiễu kênh lân cận bằng một bộ lọc có đặc tính cắt nhọn.
2.5.3.3. Tạp âm méo xuyên điều chế
Tạp âm méo xuyên điều chế là một trong nhiều loại tạp âm ở đường truyền thông tin vệ tinh. Tạp âm xuyên điều chế trong vệ tinh sinh ra khi bộ phát đáp của nó khuếch đại đồng thời nhiều sóng mang. Các đặc tuyến phi tuyến vào ra của bộ phát đáp là nguyên nhân sinh ra tạp âm xuyên điều chế. Bộ khuếch đại đèn sóng chạy TWT được sử dụng là thành phần chính của bộ phát đáp.
Hình 2.9 mô tả mối quan hệ giữa đầu vào và đầu ra của một TWT, nếu quan hệ vào ra tuyến tính như đường đứt nét thì không gây ra méo xuyên điều chế. Tuy nhiên trong thực tế đặc tuyến của TWT không tuyến tính nên gây ra xuyên điều chế. Khi mức vào vượt quá một giá trị nào đó, thì mức ra của TWT không tăng được nữa mặc dù mức vào vẫn tăng đáng kể, hiện tượtượng này gọi là bão hoà. Để méo do xuyên điều chế nhỏ hơn giá trị cho phép, TWT phải làm việc ở mức thấp hơn điểm bão hoà.
Mức công suất chênh lệch giữa điểm làm việc và điểm bão hoà tại đầu vào và đầu ra tương ứng gọi là độ lùi đầu vào (IBO) và độ lùi đầu ra (OBO).
mức vào m ứ c ra Hình 2.9. Đặc tính vào ra của TWT
Tạp âm xuyên điều chế sinh ra do các sản phẩm xuyên điều chế hoặc méo lọt vào băng tần truyền dẫn khi nhiều sóng mang được khuếch đại đồng thời bằng bộ khuếch đại TWT phi tuyến. Mức độ xuyên điều chế phụ thuộc vào số sóng mang và sự chênh lệch tần số giữa chúng.
2.6. Hiệu ứng Doppler
Hiệu ứng Doppler là hiệu ứng trong đó tần số bị lệch khi độ dài đường liên lạc vô tuyến thay đổi theo thời gian, dẫn đến thay đổi về pha liên tục. Nếu tốc độ thay đổi đường truyền trực tiếp từ trạm mặt đất đến vệ tinh là V, tốc độ ánh sáng là C, tần số tín hiệu thu được là f thì sự thay đổi tần số khi thu ∆f được tính như sau:
C V f f = 0
∆ với f0 là tần số tín hiệu.
Nói chung hiệu ứng Doppler gây ra méo trong thông tin vô tuyến băng rộng và ở các băng tần gốc đã được giải điều chế có hiện tượng dãn ra hoặc co lại. Nhưng nó không ảnh hưởng nhiều đối với các vệ tinh quỹ đạo elip hay hệ thống vệ tinh địa tĩnh.
2.7. Trễ truyền dẫn
Trong thông tin vệ tinh, hiện tượng trễ tín hiệu xảy ra khi cự ly thông tin quá
Mức vào tại điểm bão hoà
m ứ c ra
Hình 2.10. Mức lùi đầu vào và lùi đầu ra
Mức ra tại điểm làm việc
Mức ra tại điểm bão hoà
Mức vào tại điểm làm việc độ lùi đầu ra Đ ộ lù i đ ầ u v à o
sự trễ tín hiệu lên đến 250ms. Nhưng thời gian trễ 500ms mới ảnh hưởng đến cuộc thoại. Do đó nên tránh làm việc với hai bước nhảy (có trạm mặt đất chuyển tiếp cho thông tin giữa hai trạm cần liên lạc với nhau) vì sẽ gây độ trễ quá 1s.
CHƯƠNG 3.HỆ THỐNG ĐỊNH VỊ TOÀN CẦU GPS
Sự ra đời của nhiều loại phương tiện tiên tiến như máy bay, tàu vũ trụ đòi hỏi 1 kỹ thuật mà các hệ thống cũ không thể đáp ứng được đó là định vị trong không gian 3 chiều, đứng trước sự đòi hỏi đó chính phủ Mỹ đã tài trợ 1 chương trình nghiên cứu hệ thống định vị và dẫn đường trong vũ trụ. Với Bộ quốc phòng Mỹ là cơ quan thiết kế và điều khiển hệ thống định vị toàn cầu. Trong nhóm tham gia điều hành dự án GPS cần phải kể đến Phd. Ivan Getting và Phd. Bradford Parkinson đã góp phần đáng kể trong dự án.
Thập niên 1920: Ra đời hệ thống dẫn đường vô tuyến
Đầu Đại chiến thế giới 2: LORAN, hệ thống dẫn đường áp dụng phương pháp đo độ lệch thời gian của tín hiệu sóng vô tuyến, do Phòng thí nghiệm Bức xạ Đại học MIT (MIT Radiation Laboratory). LORAN cũng là hệ thống định vị trong mọi điều kiện thời tiết thực sự đầu tiên, nhưng hai chiều (vĩ độ và kinh độ).
Năm 1957: Vệ tinh Sputnik của Nga được phóng lên vũ trụ. Đại học MIT cho rằng tín hiệu vô tuyến điện của vệ tinh có thể tăng lên khi chúng tiếp cận trái đất và giảm đi khi rời khỏ trái đất và do vậy có thể truy theo vị trí từ mặt đất
Năm 1959 : TRANSIT, hệ thống dẫn đường dựa trên vệ tinh hoạt động đầu tiên, do Phòng thí nghiệm vật lý ứng dụng Johns Hopkins phát triển dưới sự chỉ đạo của TS Richard Kirschner. Mặc dù khởi đầu Transit được chế tạo để hỗ trợ cho đội tàu ngầm của Mỹ nhưng những công nghệ này đã được phát triển có ích trở thành Hệ thống định vị toàn cầu. Vệ tinh Transit đầu tiên được phóng lên vũ trụ vào năm 1959.
Năm 1960 : Hệ thống dẫn đường đo hiệu thời gian ba chiều (kinh độ, vị độ và độ cao longitude, latitude and altitude) đầu tiên do Raytheon Corporation đề xuất theo yêu cầu của Air Force để làm hệ thống dẫn đường sẽ được sử dụng với (with a proposed ICBM) có thể đạt tới độ lưu động bằng chạy trên một hệ thống đường ray. Hệ thống dẫn đường được trình bày là MOSAIC (Mobile System for Accurate ICBM Control). Ý tưởng này bị hỏng khi chương trình Mobile Minuteman bị hủy bỏ vào năm 1961
nhanh theo ba chiều không gian. Việc nghiên cứu này trực tiếp dẫn tới khái niệm về hệ thống định vị toàn cầu. Khái niệm liên quan đến việc đo thời gian tới của tín hiệu sóng vô tuyến được phát đi từ vệ tinh có vị trí chính xác đã biết. Đo thời gian sẽ cho khoảng cách tới vị trí vệ tinh đã biết và lần lượt có thể xác định được vị trí của người sử dụng.
Năm 1963 Air Force bắt đầu hỗ trợ nghiên cứu của Aerospace, chỉ định nghiên cứu này bằng Dự án Hệ thống 621B. Khoảng năm 1972, chương trình này đã biểu diễn hoạt động của một loại tín hiệu xác định khoảng cách vệ tinh mới dựa trên tiếng ồn ngẫu nhiên giả tạo (PRN, pseudo random noise).
Năm 1964 Timation, hệ thống vệ tinh hải quân, được phát triển dưới sự chỉ đạo của Roger Easton ở Phòng nghiên cứu Hải quan (Naval Research Lab, NRL) để cải thiện đồng hồ có tính ổn định cao, khả năng truyền thời gian, và dẫn đường 2 chiều. Hoạt động của Timation theo tiêu chuẩn thời gian chuẩn vũ trụ đã cung cấp cơ sở quan trọng cho hệ thống định vị toàn cầu. Vệ tinh Timation đầu tiên được phóng lên vũ trụ vào tháng 5 năm 1967.
Năm1968: Bộ Quốc phòng Mỹ (DoD, Department of Defence, USA) thành lập một ủy ban gọi là Ủy ban Thự hiện Vệ tinh Dẫn đường (NAVSEC, Navigation Satellite Executive Committee) để phối hợp nỗ lực của các nhóm dẫn đường vệ tinh (Transit của Hải quân, Chương trình Timation, và SECOR của Quân đội, hay còn gọi là Hệ thống đồng tương quan khoảng cách chuỗi (Sequential Correlation of Range System). NAVSEC ký hợp đồng một số nghiên cứu để làm sáng tỏ khái niệm dẫn đường vệ tinh cơ bản. Những nghiên cứu này về một số vấn đề chính xung quanh khái niệm như lựa chọn tần số sóng mang (dải L đối lập với dải C), thiết kế cấu trúc tín hiệu, và lựa chọn định hình quỹ đạo vệ tinh.
Năm 1969-1972 NAVSEC quản lý các thảo luận khái niệm giữa các nhóm dẫn đường vệ tinh khác nhau. APL Hải quân ủng hộ nhóm Transit mở rộng, trong khi NRL Hải quân ủng hộ cho Timation mở rộng, còn Air Force thì ủng hộ cho “chòm sao đồng bộ mở rộng”, tức dự án ‘Hệ thống 621B’.
Tháng4 năm 1973 Thứ trưởng Bộ Quốc phòng quyết định thiết lập một chương trình hợp tác ba dịch vụ để thống nhất những khái niệm khác nhau về định
vị và dẫn đường thành một hệ thống Bộ quốc phòng hỗn hợp gọi là Hệ thống vệ tinh dẫn đường quốc phòng (Defense Navigation Satellite System). Air Force được chỉ định làm người quản lý (điều hành) chương trình. Hệ thống mới được phát triển qua văn phòng chương trình kết hợp (joint program office), với sự tham gia của tất cả quan chủng quốc phòng. Đại tá Brad Parkinson được chỉ định làm người chỉ đạo văn phòng chương trình kết hợp và được đặt trọng trách phát triển kết hợp khái niệm ban đầu về hệ thống dẫn đường dựa trên không gian (space-based navigation system)
Tháng 8 năm 1973 Hệ thống đầu tiên được trình bày tới Hội đồng Thu nhận và Thẩm định Hệ thống Quốc phòng (Defense System Acquisition and Review Council, DSARC) bị từ chối thông qua. Hệ thống được trình lên DSARC được gói gọn trong Hệ thống 621B của Air Fore và không đại diện cho chương trình kết hợp. Mặc dù có người ủng hộ ý tưởng của hệ thống dẫn đường dựa trên vệ tinh mới nhưng Văn phòng Chương trình Kết hợp đã được thúc đẩy khẩn trương tổng quát hóa khái niệm bao gồm xem xét và yêu cầu tất cả các binh chủng quốc phòng.
Ngày 17/12/1973 Một khái niệm mới được trình tới DSARC và được thông qua để thực hiện và cấp kinh phí là hệ thống NAVSTAR GPS, đánh dấu khởi đầu công nhận khái niệm (ý tưởng) (Giai đoạn I của chương trình GPS). Khái niệm mới thực sự là một hệ thống dàn xếp (thỏa hiệp – compromise system) do Đại tá Parkinson thương lượng đã kết hợp tốt nhất giữa tất cả những khái niệm và công nghệ dẫn đường vệ tinh có sẵn. Cấu hình hệ thống được thông qua bao gồm 24 vệ tinh chuyển động trong những quỹ đạo nghiêng chu kỳ 12 giờ đồng hồ.
Tháng 6 năm 1974 Hãng Rockwell International được chọn làm nhà cung cấp vệ tinh cho chương trình GPS.
Ngày 14 tháng 7 năm 1974 Vệ tinh NAVSTAR đầu tiên được phóng lên vũ trụ. Vệ tinh này được chỉ định là Vệ tinh Công nghệ Dẫn đường (NTS) số 1, về cơ bản đây là vệ tịnh Timation tân trang lại do NRL đóng. Vệ tinh thứ hai (là vệ tinh cuối cùng) của nhóm NTS được phóng vào năm 1977. Những vệ tinh này được sử dụng cho việc đề xuất đánh giá khái niệm (ý tưởng) và thực hiện những đồng hồ
Năm 1977: Thực hiện kiểm tra thiết bị người sử dụng ở Yuma, Arizona. Ngày 22/2/1978: Vệ tinh Block I đầu tiên được phóng. Toàn bộ 11 vệ tinh Block I được phóng trong khoảng thời gian 1978 và 1985 trên Atlas-Centaur. Những vệ tinh Block I do Rockwell International xây dựng được coi là những vệ tinh mẫu phát triển được dùng để kiểm tra hệ thống. Bị mất một vệ tinh do phóng trượt.
Ngày 26/4/1980: Phóng vệ tinh GPS đầu tiên thực hiện những bộ cảm ứng Hệ thống phát hiện tiếng nổ hạt nhân hoạt động tổng hợp (Integrated Operational Nucluear Detonation Detection System (IONDS) sensors).
Năm 1982: Bộ Quốc phòng thông qua quyết định giảm số vệ tinh của chòm vệ tinh GPS từ 24 xuống 18 tiếp theo sau tái cấu tạo lại chương trình chính do Quyết định 1979 của Văn phòng Thư ký Bộ Quốc phòng gây ra để cắt giảm kinh phí 500 triệu đô la (khoảng 30%) từ ngân sách cho giai đoạn năm tài chính FY81- FY86.
Ngày 14/7/1983 Phóng vệ tinh GPS đầu tiên thực hiện hệ thống dò tìm tiếng nổ hạt nhân (NDS) mới hơn.
Ngày 16/9/1983 Theo (the Soviet downing of Korean Air flight 007), tổng thống Reagan hứa cho GPS được sử dụng cho các máy bay dân dụng hoàn toàn miễn phí khi hệ thống đưa vào sử dụng. Sự kiện này đánh dấu sự bắt đầu lan tỏa công nghệ GPS từ quân sự sang dân sự.
Năm 1984: Khảo sát trở thành một thị trường GPS thương mại đầu bảng được nâng cánh! Để bù cho số vệ tinh giới hạn có sẵn trong quá trình phát triển chòm vệ tinh, các nhà khảo sát đã chuyển qua số kỹ thuật nâng cao độ chính xác bao gồm kĩ thuật GPS Vi phân (DGPS) và kỹ thuật truy theo pha sóng mang (carrier phase tracking).
Tháng 4 1985 Hợp đồng thiết bị người sử dụng chính đầu tiên được giao cho JPO. Hợp đồng bao gồm việc nghiên cứu, phát triển cũng như lựa chọn sản xuất các máy thu GPS dùng cho máy bay, tàu thủy và máy thu xách tay (gọn nhẹ).
Năm 1987: Bộ Quốc phòng chính thức yêu cầu Bộ Giao thông (Department of Transport, DoT) có trách nhiệm thiết lập và cung cấp một văn phòng đáp ứng nhu cầu người sử dụng dân sự về thông tin GPS, dữ liệu và hỗ trợ kỹ thuật. Tháng 2 năm 1989, Coast Guard có trách nhiệm làm đại lý hướng dẫn Dịch vụ GPS Dân sự (civil GPS service).
Tháng 3/1988 Thư ký Air Force thông báo về việc mở rộng chòm GPS tới 21 vệ tinh cộng thêm 3 vệ tinh dự phòng.
Ngày 14/2/1989 Vệ tinh đầu tiên của các vệ tinh Block II đã được phóng từ Cape Canaveral AFT, Florida, trên dàn phóng Delta II (Delta II booster). Phi thuyền con thoi (Space Shuttle) làm bệ phóng theo kế hoạch cho các vệ tinh Block II được Rockwell Intenational đóng. Tiếp theo tai nạn Challenger 1986, Văn phòng Chương trình Kết hợp (JPO) xem xét lại và đã sử dụng Delta II làm bệ phóng vệ tinh GPS.