1) Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(–1;1) và B(3;3), đường thẳng (∆): 3x – 4y + 8 = 0. Lập phương trình đường trịn qua A, B và tiếp xúc với đường thẳng (∆).
2) Trong khơng gian với hệ tọa độ Oxyz, cho 4 điểm A(3;0;0), B(0;1;4), C(1;2;2), D(–1;–3;1). Chứng tỏ A, B, C, D là 4 đỉnh của một tứ diện và tìm trực tâm của tam giác ABC.
Câu VII.b: (1 điểm) Giải hệ phương trình: log log 2 2 3 = + = y x x y xy y . Đề số 33 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I: (2 điểm) Cho hàm số y x= 4+mx3−2x2−3mx+1 (1).
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2) Định m để hàm số (1) cĩ hai cực tiểu.
Câu II: (2 điểm)
1) Giải phương trình: cos3xcos3x – sin3xsin3x = 2 3 2 8 +
2) Giải phương trình: 2x+ +1 x x2+ + +2 (x 1) x2+2x+ =3 0
Câu III: (1 điểm) Tính tích phân: 2( )
0
1 sin 2π π
=∫ +
I x xdx.
Câu IV: (1 điểm) Cho lăng trụ ABC.A'B'C' cĩ A′.ABC là hình chĩp tam giác đều cạnh đáy AB = a, cạnh bên AA′ = b. Gọi α là gĩc giữa hai mặt phẳng (ABC) và (A′BC). Tính tanα và thể tích
của khối chĩp A′.BB′C′C.
Câu V: (1 điểm) Cho ba số a, b, c khác 0. Chứng minh: a22 +b22 +c22 ≥ + +a b c
b c a b c a.
II. PHẦN RIÊNG (3 điểm)
A. Theo chương trình chuẩnCâu VI.a: (2 điểm) Câu VI.a: (2 điểm)
1) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD cĩ điểm I (6; 2) là giao điểm của 2 đường chéo AC và BD. Điểm M (1; 5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng ∆: x + y – 5 = 0. Viết phương trình đường thẳng AB.
2) Trong khơng gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x – 2y – z – 4 = 0 và mặt cầu (S): x2 + y2 + z2 – 2x – 4y – 6z – 11 = 0. Chứng minh rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường trịn. Xác định tọa độ tâm và tính bán kính của đường trịn đĩ.
Câu VII.a: (1 điểm) Giải bất phương trình: 9x2+ −x 1+ ≥1 10.3x2+ −x 2.
B. Theo chương trình nâng caoCâu VI.b: (2 điểm) Câu VI.b: (2 điểm)
1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường trịn (C): x2 + y2 + 4x + 4y + 6 = 0 và đường thẳng ∆: x + my – 2m + 3 = 0 với m là tham số thực. Gọi I là tâm của đường trịn (C). Tìm m để ∆ cắt (C) tại 2 điểm phân biệt A và B sao cho diện tích ∆IAB lớn nhất.
2) Trong khơng gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm D(–1; 1; 1) và cắt ba trục tọa độ tại các điểm M, N, P khác gốc O sao cho D là trực tâm của tam giác MNP.
Câu VII.b: (1 điểm) Giải phương trình: 4x −2x+1+2(2x−1)sin(2x+ − + =y 1) 2 0.