Một ví dụ tiêu biểu

Một phần của tài liệu thuật toán - thuật giải (Trang 71)

X. BIỄU DIỄN TRI THỨC SỬ DỤNG MẠNG NGỮ NGHĨA 1 Khái niệm

X.3. Một ví dụ tiêu biểu

Dù là một phương pháp tương đối cũ và có những yếu điểm nhưng mạng ngữ nghĩavẫn có những ứng dụng vô cùng độc đáo. Hai loại ứng dụng tiêu biểu của mạng ngữ nghĩa là ứng dụng xử lý ngôn ngữ tự nhiên và ứng dụng giải bài toán tự động.

Ví dụ 1 : Trong ứng dụng xử lý ngôn ngữ tự nhiên, mạng ngữ nghĩa có thể giúp máy tính phân tích được cấu trúc của câu để từ đó có thể phần nào "hiểu" được ý nghĩa của câu.

Chẳng hạn, câu "Châu đang đọc một cuốn sách dày và cười khoái trá" có thể được biểu diễn bằng một mạng ngữ nghĩa như sau :

Ví dụ 2 : Giải bài toán tam giác tổng quát

Chúng ta sẽ không đi sâu vào ví dụ 1 vì đây là một vấn đề quá phức tạp để có thể trình bày trong cuốn sách này. Trong ví dụ này, chúng ta sẽ khảo sát một vấn đề đơn giản hơn nhưng cũng không kém phần độc đáo. Khi mới học lập trình, bạn thường được giáo viên cho những bài tập nhập môn đại loại như "Cho 3 cạnh của tam giác, tính chiều dài các đường cao", "Cho góc a, b và cạnh AC. Tính chiều dài trung tuyến", ... Với mỗi bài tập này, việc bạn cần làm là lấy giấy bút ra tìm cách tính, sau khi đã xác định các bước tính toán, bạn chuyển nó thành chương trình. Nếu có 10 bài, bạn phải làm lại việc tính toán rồi lập trình 10 lần. Nếu có 100 bài, bạn phải làm 100 lần. Và tin buồn cho bạn là số lượng bài toán thuộc loại này là rất nhiều! Bởi vì một tam giác có tất cả 22 yếu tố khác nhau!. Không lẽ mỗi lần gặp một bài toán mới, bạn đều phải lập trình lại? Liệu có một chương trình tổng quát có thể tự động giải được tất cả (vài ngàn!) những bài toán tam giác thuộc loại này không? Câu trả lời là CÓ ! Và ngạc nhiên hơn nữa, chương trình này lại khá đơn giản. Bài toán này sẽ được giải bằng mạng ngữ nghĩa.

Có 22 yếu tố liên quan đến cạnh và góc của tam giác. Để xác định một tam giác hay để xây dựng một 1 tam giác ta cần có 3 yếu tố trong đó phải có yếu tố cạnh. Như vậy có khoảng C322 -1 (khoảng vài ngàn) cách để xây dựng hay xác định một tam giác. Theo thống kê, có khoảng 200 công thức liên quan đến cạnh và góc 1 tam giác.

Để giải bài toán này bằng công cụ mạng ngữ nghĩa, ta phải sử dụng khoảng 200 đỉnh để chứa công thức và khoảng 22 đỉnh để chứa các yếu tố của tam giác. Mạng ngữ nghĩa cho bài toán này có cấu trúc như sau :

Đỉnh của đồ thị bao gồm hai loại :

 Đỉnh chứa công thức (ký hiệu bằng hình chữ nhật)  Đỉnh chứa yếu tố của tam giác (ký hiệu bằng hình tròn)

Cung : chỉ nối từ đỉnh hình tròn đến đỉnh hình chữ nhật cho biết yếu tố tam giác xuất hiện trong công thức nào (không có trường hợp cung nối giữa hai đỉnh hình tròn hoặc cung nối giữa hai đỉnh hình chữ nhật).

* Lưu ý : trong một công thức liên hệ giữa n yếu tố của tam giác, ta giả định rằng nếu đã biết giá trị của n-1 yếu tố thì sẽ tính được giá trị của yếu tố còn lại. Chẳng hạn như trong công thức tổng 3 góc của tam giác bằng 1800 thì khi biết được hai góc, ta sẽ tính được góc còn lại.

Cơ chế suy diễn thực hiện theo thuật toán "loang" đơn giản sau :

B1 : Kích hoạt những đỉnh hình tròn đã cho ban đầu (những yếu tố đã có giá trị)

Một phần của tài liệu thuật toán - thuật giải (Trang 71)

Tải bản đầy đủ (DOC)

(103 trang)
w