Lịch sử phát triển

Một phần của tài liệu TIỂU LUẬN MÔN CÔNG NGHỆ VỆ TINH KỸ THUẬT XỬ LÝ TÍN HIỆU TRONG WIMAX (Trang 26)

Dù thuật ngữ OFDM mới phổ biến rộng rãi gần đây nhưng kĩ thuật này đã được xuất hiện cách nay hơn 40 năm:

• Năm 1971, một công trình khoa học của Weisteins và Ebert đã chứng minh rằng phương pháp điều chế và giải điều chế OFDM có thể được thực hiện thông qua phép biến đổi IDFT (biến đổi Fourier rời rạc ngược) và DFT ( biến đổi Fourier rời rạc). Sau đó, cùng với sự phát triển của kĩ thuật số, người ta sử dụng phép biến đổi IFFT và FFT cho bộ điều chế OFDM.

• Năm 1999, tập chuNn IEEE 802.11 phát hành chuNn 802.11a về hoạt động của OFDM ở băng tần 5GHz UNI.

• Năm 2003,IEEE công bố chuNn 802.11g cho OFDM hoạt động băng tần 2.4GHz và phát triển OFDM cho hệ thống băng rộng, chứng tỏ sự hữu dụng của OFDM với các hệ thống có SNR( tỉ số S/N) thấp.

Ngày nay, kĩ thuật OFDM còn kết hợp với các phương pháp mã hóa kênh sử dụng trong thông tin vô tuyến, gọi là Coded OFDM, nghĩa là tín hiệu trước khi điều chế sẽ được mã hóa với nhiều loại mã khác nhau để hạn chế các lỗi xảy ra trên kênh truyền. Do chất lượng kênh (độ fading và tỉ số S/N) của mỗi sóng mang con phụ là khác nhau, người ta thực hiện điều chế tín hiệu trên mỗi sóng mang đó với các mức điều chế khác nhau, gọi là điều chế thích nghi (adaptive modulation) hiện đang được sử dụng trong hệ thống thông tin máy tính băng rộng HiperLAN của ETSI ở Châu Âu.

2.1.3 Các ưu và nhược điểm của kĩ thuật OFDM

Ngoài ưu điểm tiết kiệm băng thông kênh truyền kể trên, OFDM còn có một số ưu điểm sau đây :

• Hệ thống OFDM có thể loại bỏ hiện tượng nhiễu xuyên kí hiệu ISI (Inter-Symbol Interference) nếu độ dài chuỗi bảo vệ (guard interval) lớn hơn độ trễ truyền dẫn lớn nhất của kênh truyền.

• OFDM phù hợp cho việc thiết kế hệ thống truyền dẫn băng rộng.

• Cấu trúc máy thu đơn giản.

Tuy nhiên, bên cạnh đó, OFDM cũng có một số nhược điểm sau :

• Việc sử dụng chuỗi bảo vệ giúp giảm hiện tượng ISI do phân tập đa đường nhưng chuỗi bảo vệ không mang thông tin có ích, chiếm một phần băng thông của đường truyền làm giảm hiệu suất đường truyền.

• Do yêu cầu về tính trực giao giữa các sóng mang phụ nên hệ thống OFDM khá nhạy cảm với hiệu ứng Dopler, dịch tần (frequency offset) và dịch thời( time offset) do sai số đồng bộ.

• Đường bao biên độ của tín hiệu phía phát không bằng phẳng, gây ra méo phi tuyến ở các bộ khuếch đại công suất ở đầu phát và đầu thu.

2.2.1 Sự trực giao của hai tín hiệu

Nếu ký hiệu các sóng mang con được dùng trong hệ thống OFDM là si(t) và sj(t). Để đảm bảo tính trực giao cho OFDM, các hàm sin của sóng mang con phải thỏa mãn điều kiện sau :

Trong đó:

: là khoảng cách tần số giữa hai sóng mang con. T là thời gian ký hiệu,

N là số các sóng mang con,

N.Δf là băng thông truyền dẫn và ts là dịch thời gian.

Dấu “*” trong công thức (2.1) chỉ sự liên hợp phức.Ví dụ: nếu tín hiệu là sin(mx) với m= 1,2…. thì nó trực giao trong khoảng từ -π đến π.

Trong toán học, số hạng trực giao có được từ việc nghiên cứu các vector.Theo định nghĩa, hai vectơ được gọi là trực giao với nhau khi chúng vuông góc với nhau (tạo nhau một góc 900) và tích của 2 vectơ là bằng 0.

Hình 2.3 Tích của hai vectơ vuông góc

Hình 2.4 Bộ điều chế OFDM

Giả sử băng thông hệ thống là B chia thành Nc kênh con, với chỉ số kênh conlà n, n ∈ {− L,−L +1,...,−1,0,1,..., L −1, L}, nên NFFT=2L+1. Dòng dữ liệu đầu vào{ ai } chia thành NFFT dòng song song với tốc độ dữ liệu giảm đi NFFT lần thông qua bộ chia nối tiếp/song song. Dòng bit trên mỗi luồng song song{ ai } lại được điều chế thành mẫu của tín hiệu phức đa mức dk,n , n là chỉ số song mang phụ, i là chỉ số khe thời gian tương ứng với Nc bit song song sau khi qua bộ S/P, k là chỉ số khe thờigian ứng với Nc mẫu tín hiệu phức. Các mẫu tín hiệu phát dk,n , được nhân với xung cơ sở để giới hạn phổ của mỗi sóng mang, sau đó được dịch tần lên đến kênh con tương ứng bằng việc nhân với hàm phức ejL ω s t , làm các tín hiệu trên các sóng mang trực giao nhau. Tín hiệu sau khi nhân với xung cơ sở và dịch tần cộng lại qua bộ tổng và cuối cùng được biểu diễn như sau:

Tín hiệu này được gọi là mẫu tín hiệu OFDM thứ k, biễu diễn tổng quát tín hiệu OFDM sẽ là:

Trước khi phát đi thì tín hiệu OFDM được chèn thêm chuỗi bảo vệ để chống nhiễu xuyên kí hiệu ISI.

Phép điều chế OFDM có thể thực hiện được thông qua phép biến đổi IDFT và phép giải điều chế OFDM có thể thực hiện được bằng phép biến đổi DFT. Thay vì sử dụng IDFT người ta có thể sử dụng phép biến đổi nhanh IFFT cho bộ điều chế OFDM, sử dụng FFT cho bộ giải điều chế OFDM. Điều chế OFDM bằng phương pháp biến đổi ngược Fourrier nhanh cho phép một số lượng lớn các sóng mang con với độ phức tạp thấp.

2.2.3 Thực hiện bộ điều chế bằng thuật toán IFFT

Tín hiệu sau bộ giải điều chế OFDM khi chuyển đổi tương tự thành số, luồng tín hiệu trên được lấy mẫu với tần số lấy mẫu:

Ở tại thời điểm lấy mẫu t=kT+lta,, S’(t-kT) =S0, do vậy (2.3) viết lại :

Phép biểu diễn (2.7) trùng với phép biến đổi IDFT. Do vậy bộ điều chế OFDM có thể thực hiện một cách dễ dàng bằng phép biến đổi IDFT.

Ưu điểm của phương pháp điều chế OFDM không chỉ thể hiện ở hiệu quả sử dụng băng thông mà còn có khả năng làm giảm hay loại trừ nhiễu xuyên kí hiệu ISI (Inter Symbol Interference) nhờ sử dụng chuỗi bảo vệ (Guard Interval- GI ). Một mẫu tín hiệu có độ dài là TS, chuỗi bảo vệ tương ứng là một chuỗi tín hiệu có độ dài TG ở phía sau được sao chép lên phần phía trước của mẫu tín hiệu như hình vẽ sau:

Hình 2.5 Chuỗi bảo vệ GI

Do đó, GI còn được gọi là Cyclic Prefix (CP). Sự sao chép này có tác dụng chống lại nhiễu xuyên kí hiệu ISI do hiệu ứng phân tập đa đường.

Nguyên tắc này giải thích như sau: Giả sử máy phát đi một khoảng tín hiệu có chiều dài là Ts, sau khi chèn thêm chuỗi bảo vệ có chiều dài TG thì tín hiệu này có chiều dài là T = TS+TG. Do hiệu ứng đa đường multipath, tín hiệu này sẽ tới máy thu theo nhiều đường khác nhau. Trong hình vẽ mô tả trang bên,hình a,tín hiệu theo đường thứ nhất không có trễ, các đường thứ hai và thứ ba đều bị trễ một khoảng thời gian so với đường thứ nhất. Tín hiệu thu được ở máy thu sẽ là tổng hợp của tất cả các tuyến, cho thấy kí hiệu đứng trước sẽ chồng lấn vào kí hiệu ngay sau đó, đây chính là hiện tượng ISI.Do trong OFDM có sử dụng chuỗi bảo vệ có độ dài TG sẽ dễ dàng loại bỏ hiện tượng này. Trong trường hợp TG ≥τ MAX như hình vẽ mô tả thì phần bị chồng lấn ISI nằm trong khoảng của chuỗi bảo vệ, còn thành phần tín hiệu có ích vẫn an toàn. Ở phía máy thu sẽ gạt bỏ chuỗi bảo vệ trước khi gửi tín hiệu đến bộ giải điều chế OFDM. Do đó, điều kiện cần thiết để cho hệ thống OFDM không bị ảnh hưởng bởi ISI là: TG ≥τ MAX (2.8)

a ) Không có GI

Hình 2.6 Tác dụng của chuỗi bảo vệ

Việc sử dụng chuỗi bảo vệ đảm bảo tính trực giao của các sóng mang con, do vậy đơn giản hoá cấu trúc bộ đánh giá kênh truyền, bộ cân bằng tín hiệu ở máy thu. Tuy nhiên, do chuỗi bảo vệ không mang thông tin có ích nên tăng phổ của tốc độ truyền nên phổ tín hiệu sẽ tăng, tiêu tốn băng thông, làm giảm hiệu suất sử dụng băng thông một lượng là:

2.2.5 Phép nhân với xung cơ bản

Trong đa số các hệ thống vô tuyến, tín hiệu trước khi truyền đi đều được nhân với xung cơ bản. Mục đích chính là để giới hạn phổ tín hiệu phát sao cho phù hợp với độ rộng kênh truyền.Trong trường hợp độ rộng phổ tín hiệu lớn hơn độ rộng kênh truyền thì sẽ gây nhiễu xuyên kênh cho hệ thống khác. Trong OFDM, tín hiệu trước khi phát đi được nhân với xung cơ bản có bề rộng đúng bằng bề rộng của một mẫu tín hiệu OFDM, xung cơ bản thường là xung vuông hay xung chữ nhật. Sau khi chèn thêm chuỗi bảo vệ thì xung cơ bản kí hiệu là S(t) có độ rộng là TS + TG

Hình 2.7 Xung cơ bản

Trong thực tế xung cơ bản thường được sử dụng là bộ lọc cos nâng (Raisecosine filter).

2.3 Nguyên lý giải điều chế OFDM2.3.1 Truyền dẫn phân tập đa đường 2.3.1 Truyền dẫn phân tập đa đường

Kênh truyền dẫn phân tập đa đường,về mặt toán học, được biểu hiện qua đáp ứng xung h(τ, t) và hàm truyền đạt H(j , t).Đối với đáp ứng xung, biến là trễ truyền dẫn của kênh, là khoảng thời gian tín hiệu đi từ máy phát đến máy thu. Biến đổi Fourier của đáp ứng xung cho ta hàm truyền đạt của kênh

Giả sử không có AWGN, mối liên hệ giữa tín hiệu thu u(t), tín hiệu phát m(t) và đáp ứng xung:

Trong miền thời gian là tích chập của tín hiệu phát và đáp ứng xung của kênh:

2.3.2 Nguyên tắc giải điều chế2.3.2.1 Sơ đồ: 2.3.2.1 Sơ đồ:

Hình 2.9 Bộ thu tín hiệu OFDM

Các bước thực hiện ở đây đều ngược lại so với phía máy phát. Tín hiệu thu sẽ được tách chuỗi bảo vệ, giải điều chế để khôi phục băng tần gốc, giải điều chế ở các sóng mang con, chuyển đổi mẫu tín hiệu phức thành dòng bít (tín hiệu số) và chuyển đổi song song sang nối tiếp:

Hình 2.10 Tách chuỗi bảo vệ

Sau khi tách chuỗi bảo vệ khỏi luồng tín hiệu u(t), luồng tín hiệu nhận được là:

2.3.2.2 Thực hiện giải điều chế bằng thuật toán FFT

Giả thiết một mẫu tin OFDM Ts được chia thành NFFT mẫu tín hiệu, tín hiệu được lấy mẫu với chu kỳ lấy mẫu là ta. Khi đó độ rộng một mẫu là :

Sau khi lấy mẫu, tín hiệu nhân được sẽ trở thành luồng tín hiệu số:

Mẫu tín hiệu sau khi giải điều chế được biểu diễn dưới dạng số:

Biểu thức trên chính là phép biễu diễn DFT với chiều dài NFFT.

2.4 Ứng dụng và hướng phát triển của kỹ thuật điều chế OFDM

Ngày nay, kĩ thuật OFDM đã được tiêu chuN n hoá là phương pháp điều chế cho các hệ thống phát thanh số như DAB (Digital Audio Broadcasting), DRM (Digital Radio Mondiale - hệ thống phát thanh số đường dài thay cho hệ thống AM), các hệ thống truyền hình số mặt đất DVB-T (Digital Video Broadcasting for Terrestrial Transmission Mode), DVB-H (Digital Video Broadcasting for Handheld) và ít người biết rằng sự nâng cao tốc độ đường truyền trong hệ thống ADSL là nhờ kĩ thuật OFDM.Nhờ kĩ thuật điều chế đa sóng mang và cho phép chồng lấn phổ giữa các sóng mang mà tốc độ truyền dẫn trong ADSL tăng lên đáng kể.

DRM là hệ thống phát thanh số thay thế cho hệ thống phát thanh truyền thống AM. Tần số sóng mang cho hệ thống DRM tương đối thấp, nhỏ hơn 30MHz, phù hợp cho việc truyền sóng khoảng cách lớn. Môi trường truyền sóng của hệ thống là kênh phân tập đa đường có sự tham gia phản xạ mặt đất và tầng điện li nên phạm vi phủ sóng của DRM rất lớn, có thể phủ sóng đa quốc gia hay liên lục địa.

Các tham số cơ bản của DRM theo ETSI, như sau: Độ rộng băng: B=9.328kHz

Độ dài FFT: NFFT= 256.

Số sóng mang được sử dụng để truyền tin: NC=198.

Do trễ truyền dẫn tương đối lớn nên hệ thống DRM được thiết kế chỉ dành cho các máy thu tĩnh hay xách tay. Điều này khác hẳn so với hệ thống DAB hay DVB được thiết kế cho máy thu có tốc độ di chuyển tương đối lớn như ô tô, tàu hoả….

2.4.2 Các hệ thống DVB2.4.2.1 DVB-T 2.4.2.1 DVB-T

Giới thiệu :

Thế hệ máy phát số ra đời khắc phục nhược điểm của máy phát tương tự như khả năng mang nhiều chương trình trên một kênh RF, hỗ trợ khả năng thu tín hiệu đa đường và thu di động… Máy phát số DVB-T và máy phát hình tương tự giống nhau, chỉ khác nhau phần điều chế.

Hình 2.12 Sơ đồ khối bộ DVB-T

Tín hiệu truyền đi được tổ chức thành từng khung, cứ 4 khung liên tiếp tạo thành 1 siêu khung.Lí do của việc tạo khung là để phục vụ tổ chức mang thông tin tham số của phía phát bằng các sóng mang báo hiệu thông số phía phát (Transmission Parameters Signalling carriers- TPS). Việc hình thành siêu khung là để chèn đủ số nguyên lần gói mã sửa sai reed-Solomon 204 byte trong dòng truyền tải MPEG-2 dù ta chọn bất kì cấu hình nào để tránh việc chèn thêm các gói đệm không cần thiết. Mỗi khung chứa 68 symbol OFDM trong miền thời gian được đánh số từ 0 đến 67.Mỗi symbol này chứa hàng ngàn sóng mang (6817 với chế độ 8K, 1705 với chế độ 2K) nằm dày đặc trong dải thông 8MHz (ở nước ta chọn dải thông8MHz, một số nước khác chọn 7MHz). Như vậy, một symbol ODFM sẽ chứa:

• Sóng mang dữ liệu: được điều chế M-QAM, với mode 8K là 6048 sóng mang và mode 2K là 1512.

• Sóng mang dẫn đường (pilot symbol, mang thông tin phía phát để khôi phục tín hiệu: các pilot này thường được điều chế BPSK với mức công suất 2.5dB

• Pilot liên tục: gồm 177 pilot với mode 8K, 15 với mode 2K, có vị trí cố định trong 8MHz để phía thu sửa lỗi tần số và pha, tự động điều chỉnh tần số.

• Pilot rời rạc: 524 với mode 8K, 131 với mode 2K, không có vị trí cố định trong miền tần số nhưng được rải đều trong dải tần 8MHz, giúp đầu thu tự động điều chỉnh để đạt đáp ứng kênh tốt nhất.

• Sóng mang thông số phát TPS: chứa nhóm thông số phát được điều chế BPSK, gồm 68 sóng mang trong mode 8K, 17 trong mode 2K luôn có vị trí cố định trong biểu đồ chòm sao BPSK và trong dải thông 78MHz.

Để tránh nhiễu giữa các kí hiệu ISI và nhiễu tương hỗ giữa các sóng mang ICI, nguời ta thực hiện chèn thêm chuỗi bảo vệ GI vào mỗi symbol. Việc chèn thêm này được thực hiện bên phía phát với thời gian bảo vệ TG khác nhau theo quy định của DVB: 1/4 TU, 1/8 TU, 1/16TU, 1/32 TU (TU: chiều dài phần tín hiệu có ích).

2.4.2.2 DVB-H : Điện thoại di động truyền hình

Hình 2.13 Sơ đồ thu của DVB-H

Cấu trúc máy thu của điện thoại di động DVB-H được cho trên hình gồm 2 phần:

• Một bộ giải điều chế DVB-H (gồm khối điều chế DVB-T, module Time slicing và module MPE-FEC) và một đầu cuối DVB-H.

• Tín hiệu vào là tín hiệu DVB-T. Khối điều chế DVB-T thu lại các gói dòng truyền tải MPEG-2, tín hiệu này cung cấp các mode truyền dẫn (2K, 8K và 4K) với các tín hiệu mang thông số truyền dẫn - TPS tương ứng.Module Time Slicing giúp tiết kiệm công suất tiêu thụ và hỗ trợ việc chuyển giao mạng linh hoạt hơn. Module MPE-FEC cung cấp mã sửa lỗi tiến cho phép bộ thu có thể đương đầu với các điều kiện thu đặc biệt khó khăn. Tín hiệu ra khỏi giải điều chế DVB-H có dạng các gói của dòng truyền tải TS hoặc các IP Datagrams (khi thu tín hiệu DVB-H).Đầu cuối DVB-H giải mã các IP Datagrams,hiển thị nội dung của các chương trình DVB-H.

Hiện nay nhiều hãng sản xuất điện thoại đã có các thế hệ ĐTDĐ DVB-H đầu tiên: NOKIA 7700 và 7710, PHILIPS HoTMAN 2, SIEMENS…

Kiến trúc ban đầu của các máy ĐTDĐ DVB-H hiện nay gồm:

• Điện thoại tích hợp 3 băng tần số: GSM, GPRS và UMTS (3G).

• Bộ thu DVB-H.

• Camera 1.3M pixel.

• Màn hiển thị VGA (640 x 480).

• Màn hình cảm biến - touch screen.

Một phần của tài liệu TIỂU LUẬN MÔN CÔNG NGHỆ VỆ TINH KỸ THUẬT XỬ LÝ TÍN HIỆU TRONG WIMAX (Trang 26)

Tải bản đầy đủ (DOCX)

(66 trang)
w