Nguyên văn Dao

Một phần của tài liệu Nonlinear connected oscillations of rigid bodies (Trang 26)

(Okỉkịk — ////ito*fiCOS9?*sin9?i—/u@ksm<pk,

ỳ k = - f i H 2T}k c o s 2 d k - / * C O S 0 * + ~ ^ t c o s ỡ * ,

■í2**?rA = fẲH2íỉkilkCOs6ksindk+fLH2lk sỉndk— /i^sinớ*,

9^* = ^**+9?*» 0* =

These equations have the standard form, for which the method of perturbation theory can conveniently be used. Following this method, in the first approximation we can re­ place (7.6) by equations: ềk+M, (0*cosỹ*Ị, z a)* ^ Uk ỉ k ệ k = - / í W , {<p* s i n ỹ * |, ỳ k = — ^ r/* — M ,{/*cosẽ*Ị+ M .Ị^ co sÕ * }, ' £*»7*0* = iu //2A/,|/*sin0*)-iuA/t |!//Jksin0*).

These are obtained by averaging the right-hand sides of (7.6) in time.

Limiting our investigation to the one-frequency regimes of oscillations of a beam, we assume that any natural frequency, for example 0)j, is in the resonance. Then, the solution (7.3) may be written in the form:

y = Xj(x)Tj(t),

(7-8) V

2 = 2 j X k(x)Ik[t), k = l

and Eqs. (7.7) become:

(7.9) 1 , - - ^ + ^ , « , ^ ) .

“>JĨJ<PJ = - / * Pì(ỉ j,<Pj)>

where

P i = A /, (Ắc#;), ^ 2 = M ị { $ / S Ì n ỹ '/ } { ik- 9ik- i| - 0 ( * # » .

By way of example, we consider the transverse oscillations of a beam with hinged ends,

for which xk-= sin — X, assuming th a t Q ( x , r ) — P s ỉ n ^ Ỵ - x s i n r / and that V2—CO* — /4.1.

Then we have:

£/ = - y ( - H i + - 7 P]sin2<p\ ỉj,

wjtj<Pj = 2 [ ~ ^ + ^ ( 2 P /+ P /c o s2 9^ +3^)]^ , where

Nonlinear connected oscillations o f rigid bodies 329

The stationary values of Ệj and (Pj are determined by the equations Ệj = ộ)j = 0. Hence, we obtain:

ỉ ) = -3^ ( A - 2 P Ỉ L ± ] / p f ĩ J ^ H Ĩ ? ) i

sin2<PJ = Hiv/ LPj, cos2( f j = ~ 7 P2 ]/ P j L 2 — H i v 2 .

L r j

It has been proved that only the upper sign corresponds to the stability of oscillations of the beam. Thus, in the first approximation, we have:

(7.10)when when y = Ệjsin(ơ)jt+<pj)sin X, CO z = ^ / k( i ) s i n - ^ - ^ , A « 1 1 tj = ] / 3^ - 2P ] , itilfpj = -J.—>-*-» = --- --- ■=“ 17 / 2 ^ '- J

Một phần của tài liệu Nonlinear connected oscillations of rigid bodies (Trang 26)

Tải bản đầy đủ (PDF)

(32 trang)