Các vấn đề không thể thực hiện được bằng chương trình quản lý hiện tại. Ta giải quyết vấn đề tồn tại này bằng nghiên cứu của luận văn sử dụng công cụ
“Microsoft Analysis Services” của Microsoft để tiến hành tạo mô hình phân lớp dữ liệu dựa trên kĩ thuật “Microsoft Decision Tree” – Cây quyết định.
Dữ liệu vào của mô hình là bảng chính của cơ sở dữ liệu sơ yếu lý lịch nhân sự. Cơ sở dữ liệu này bao gồm: Bảng dữ liệu chính, dữ liệu tham chiếu và dữ liệu danh mục việc bảng dữ liệu chính sẽ là bảng dữ liệu vào cho mô hình xây dựng. Bảng dữ liệu được làm việc HC_EMP đây là bảng dữ liệu chính chứa thông tin cần cho mô hình xây dựng. Việc xây dựng mô hình không mấy khó khăn và rất nhanh chóng qua 3 bước xác định:
Bước 1:
Chạy chương trình “Microsoft Analysis Services Manager” kết nối vào Máy chủ
Bước 2:
Xác định thuộc tính cần dự đoán và thuộc tính đầu vào cho mô hình. Ưu điểm của công cụ này không phụ thuộc quá nhiều vào việc chuẩn bị dữ liệu;
Bước 3:
Dùng chức năng xây dựng mô hình để:
+Mô tả bảng dữ liệu với dữ liệu vào và trường dữ liệu cần dựđoán;
+Chọn thuật toán cần sử dụng trong luận văn này ta dùng “Microsoft Decision Tree”.
Ta có mô hình cần.
4.1.3.Các mô hình được xây dựng:
Hình 4.2 Hình minh họa là các mô hình được xây dựng hỗ trợ cho công tác
Hình 4.3 Hình minh họa các thành phần của giao diện hỗ trợ
1.Thuộc tính cần dự đoán ởđây là trường dữ liệu thông tin về công việc hiện tại 2.Hình ảnh mô hình cây thu được
3.Con số thống kê và khả năng dự đoán cho từng node 4.Mô tả mối quan hệ giữa các nút hay luật ví dụ:
(Node Id not = 110029 and Inst Code <= 19004.25 or ( > 19023.75 and <= 20161.75 ) or > 20162.25 and Id Card Date exists)
5.Chỉ dẫn mầu sắc biểu hiện mật độ phân bố dữ liệu được đánh dấu hiển thị
theo mầu sắc và lựa chọn các trường hợp (trên hình vẽ là All cases nghĩa là tất cả các trường hợp). Công cụ hỗ trợ người dùng chi tiết từng trường hợp.
6.Hình ảnh tổng thể cùng mật độ phân bố dữ liệu của cây mô hình thu được.
Vậy thì, các mô hình có giá trị như thế nào cho các công việc đang vướng mắc đã đề cập ở trên. Ta sẽ thấy rõ hơn ở phần minh họa các kết quả thu được từ