Phát hiện-xác định cấu tử sinh học

Một phần của tài liệu Công nghệ sinh học nano (Trang 35 - 37)

Nhóm của Lee đã phát triển các tụ điện rỗng nano (nano-gap capacitors) (không gian điện cực 50 nm) với mẫu dò ssDNA cố định trên bề mặt điện cực. Các tính chất điện môi của mẫu dò ssDNA và dsDNA tạo thành khi lai với đích là khác nhau và có thể đo được thông qua các đo đạch điện dung trong những tụ điện rỗng nano này [30]. Brasuel và cộng sự đã phát triển các điện cực PEBBLE (Probes Encapsulated By Biologically Localized Embedding) nhạy với O và dùng trong giám sát các tế bào sống [142].

Có thể xác định trình tự ssDNA căn cứ trên sự vận chuyển điện tích của các chuỗi DNA qua lỗ nano trên màng silicon nitride [143] hoặc qua lỗ α-hemolysis trên màng lipid kép (hình 34) [144]. Đường kính lỗ trong cả hai trường hợp <10nm. Hiện cũng đang có các nghiên cứu dùng kênh nano để duỗi thẳng phân tử DNA, giúp đơn giản hóa quá trình giải trình tự [34]. Tốc độ giải trình tự ước tính dùng lỗ nano là 1000 - 10.000 base/giây, lớn hơn rất nhiều so với con số ~30.000 base/ngày với các máy giải trình tự truyền thống [145].

Hình 34. Kênh α-hemolysin được thể hiện mặt cắt ngang được gắn với một lớp lipid kép. Khi có điện áp, mạch đơn DNA poly(dC) được điều khiển đi qua lỗ bởi điện trường [Theo 145].

Xu cùng cộng sự đã phát triển một phương pháp mới dựa trên QD để xác định SNP với hiệu năng cao [146]. Dubertret và cộng sự đã nang hóa từng tinh thể QD trong khối phospholipid-micell đồng polymer và kết nối mixell-tinh thể này với DNA. Sau khi tiêm vào phôi của Xenopus, phức hệ này đóng vai trò như mẫu dò phát huỳnh quang và lai với các trình tự bổ sung đặc hiệu, cho phép theo dõi quá trình phát triển của phôi [147]. Maxwell cùng cộng sự [148] và Dubertret cùng cộng sự [39] đã khai thác tiềm năng của các tinh thể chất keo nano vàng để làm tắt thuốc nhuộm phát huỳnh quang trong các thí nghiệm phân biệt oligonucleotide với chỉ một base khác biệt. Một ví dụ nữa là các mẫu dò gắn hạt nano vàng kết hợp với vi chíp răng lược (mirocantilever) để phân biệt một nucleotide sai khác [149] và để chuyển đổi phân tử gắn nhằm phát hiện sự sai khác ở mức µm [150]. Arun Majumdar và đồng sự đã sử dụng vi chíp răng lược để phát hiện SNP trong DNA đích dài 10 nucleotide, không cần đánh dấu huỳnh quang hoặc phóng xạ [151, 152].

McKnight và cộng sự đã chứng minh sự kết hợp chức năng của các mẫu dò sợi nano carbon trong tế bào. Khả năng sống của các tế bào sau khi gắn mẫu dò được chứng minh bởi sự biểu hiện dài hạn của các gene mã hóa protein phát huỳnh quang xanh được biểu hiện chủ yếu trên các plasmid liên kết cộng hóa trị với các sợi nano. Khi sợi nano và các plasmid vẫn liên kết, sự điều khiển hướng đích và trực tiếp của sự biểu hiện của các gene được kết hợp dường như là khả thi [153].

Li và cộng sự đã tạo ra và dùng nanobarcode để phát hiện DNA của một số loại sinh vật gây bệnh dựa trên tín hiệu huỳnh quang với độ nhạy (attomole) và tốc độ phát hiện rất cao [56]. Công nghệ phát hiện DNA đã được Chad Mirkin và đồng sự phát triển [154]. Dubbed ‘bio-barcode’ có độ nhạy 500 zeptomolar (zepto = 10–21) cạnh tranh với PCR. Hơn nữa, ưu điểm lớn so với PCR là không cần khuếch đại bởi enzyme và có thể áp dụng với protein, cũng như DNA.

Nhóm của Lieber đi tiên phong trong việc sử dụng NT carbon fullerene thành đơn như các đầu dò trong kính hiển vi điện tử (AFM) để chụp ảnh các đại phân tử sinh học như kháng thể, DNA, α-amyloid protofibril [155].

Santra và cộng sự đã nang hóa các phức hệ ruthenium trong các lớp silica mỏng để nhận biết tế bào bạch cầu [156].

Điện cực sinh học nano cũng được dùng để phát hiện nitric oxide qua tín hiệu huỳnh quang của cytochrome c9 hoặc cytochrome c’ (biến thể của cytochrome c trong đó nhóm heme được gắn với hai cysteine) đánh dấu huỳnh quang [157].

Một phần của tài liệu Công nghệ sinh học nano (Trang 35 - 37)