Hướng phát triển

Một phần của tài liệu ứng dụng kỹ thuật khai phá dữ liệu trong hệ thống ids (Trang 107 - 109)

 Trên cơ sở đã trình bày, hiện thực một công cụ cảnh báo tấn công từ chối dịch vụ với giao diện đồ họa thân thiện và có khả năng phản ứng phù hợp với những hành vi được xem là bất thường đó.

 Cải tiến trở thành công cụ giám sát thời gian thực các cuộc tấn công DoS, cải tiến thuật toán để làm cho tốc độ tính toán nhanh hơn, không những mở rộng thêm nhiều các mẫu bất thường trong tấn công từ chối dịch vụ mà còn cả các mẫu của các kiểu tấn công khác.

 Thực nghiệm đánh giá rút ra kết luận thuật toán tối ưu cho từng loại tấn công DoS (back dos, u2r, r2l,...)

 Phát triển công cụ giám sát, cảnh báo các cuộc tấn công DDoS, DRDos.

 Xây dựng hệ thống xử lý song song để tăng tốc độ thực hiện đồng thời sẽ đưa ra những phản ứng nhanh cho các hành vi vi phạm.

 Có thể đưa vào tích hợp vào một hệ thống phát hiện lạm dụng truyền thống.

TÀI LIỆU THAM KHẢO

[1] PGS.TS Đỗ Phúc (2006), Giáo trình Khai thác Dữ liệu, Trường Đại học Công nghệ thông tin TP. Hồ Chí Minh, Đại học Quốc gia TP. Hồ Chí Minh. [2] Huỳnh Tuấn Anh, Bài giảng DATAWAREHOUSE AND DATA MINING, TRƯỜNG ĐẠI HỌC NHA TRANG (2008).

[3] Ts.Nguyễn Đình Thúc. Trí tuệ nhân tạo - Mạng Nơron – Phương pháp và ứng dụng – NXB Giáo dục năm 2000

[4] PGS.TS Nguyễn Quang Hoan. Nhập môn trí tuệ nhân tạo. Học viện Công nghệ Bưu chính Viễn thông (2007)

[5] Tuyển tập Báo cáo “Hội nghị Sinh viên Nghiên cứu Khoa học” lần thứ 6 .THUẬT GIẢI DI TRUYỀN VÀ ỨNG DỤNG. Đại học Đà Nẵng – 2008

[6] Ths. Phạm Nguyễn Anh Huy, Luận văn thạc sĩ tin học “Dùng một số thuật toán khai khoáng dữ liệu hỗ trợ truy xuất các địa chỉ Internet ở WebServer”. Trường Đại học Khoa học Tự nhiên - Đại học quốc gia TPHCM (2000).

[7 ] PGS.TS Đỗ Phúc, Luận văn tiến sĩ toán học “Nghiên cứu và phát triển một số thuật giải, mô hình ứng dụng khai thác dữ liệu (DATA MINING)”. Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia TPHCM (2002)

[8] Nong Ye. The handbook of data mining. Arizona state University. LAWRENCE ERLBAUM ASSOCIATES(LEA), PUBLISHERS Mahwah, New Jersey London (2003).

[9] Jiawei Han and Micheline Kamber, University of Illinois at Urbana- Champaign. Data Mining Concepts and Techniques 2nd. Morgan kaufmann Publishers (2006).

[10] ZhaoHui Tang and Jamie MacLennan. Data Mining with SQL Server 2005.

Wiley Publishing, Inc., Indianapolis, Indiana (2005).

[11] D. Barbara, J. Cou to, S. Jajodia, và N.Wu. “Special sectionon data mining for intrusion detection and threat analysis: Adam: a testbed for exploring the use of data mining in intrusion detection”. ACM SIGMOD Record, vol. 30, page 15-42, Dec. 2001.

[12] D. Barbara, N.Wu, và S. Jajodia. “Detection novel network intrusions using bayes estimators” Proceedings of the First SIAM International Conference on Data Mining (SDM 2001), Chicago, USA, Apr, 2001.

[13] Ken. Toshida. “Entropy based intrusion detection”. Proceedings of IEEE Pacific Rim Conference on Communications, Computers and signal Processing (PACRIM2003), vol. 2, trang 840-843. IEEE, Aug. 2003. IEEE Explore.

[14] S. B. Cho, “Incorporating soft computing techiniquesinto a probabilistic intrusion detection system”. IEEE Transactions on Systems, Man, and Cyberneticspart C: applications and reviews, vol. 32, trang 154-160, May 2002. [15] S. S. Ahmedur Rahman, Survey report association and classification rule mining for network intrusion detection, Schook of computer science University of Windsor (2006)

[16] Wenke Lee, “A data mining framework for constructing feature and models for instrusion detection systems”, Columbia University (1999)

Một phần của tài liệu ứng dụng kỹ thuật khai phá dữ liệu trong hệ thống ids (Trang 107 - 109)

Tải bản đầy đủ (DOC)

(109 trang)
w