Transistor npn và pnp

Một phần của tài liệu Giới thiệu về Linh kiện điện tử Khá chi tiết có ảnh kèm (Trang 48)

Transistor có nhiều loại, ở đây chúng ta nói đến loại transistor 2 mối nối, quen gọi là Bi-Junction Transistor, hay BJT. Trong transistor này có 2 mối nối NP+PN hay PN+NP, hay NPN và PNP. Transistor có 3 chân:

* Chân E (Emitter) là chân dùng để phun ra các hạt mang điện. Với transistor NPN, chân E phun ra dòng điện tử và với transistor PNP chân E phun ra dòng lỗ (dòng lỗ là chuyển động biểu kiến của các hạt điện tử chuyển dời trên các nối trống).

* Chân C (Collector) là chân dùng để thu gôm các hạt điện phun ra từ chân E. Với transistor NPN, nó thu gôm các hạt điện tử và với transistor PNP nó thu gôm các hạt lỗ.

* Chân B (Base) là chân dùng để điều khiển dòng điện chảy trong transistor, chảy từ chân E vào chân C.

Khi dùng transistor làm linh kiện khuếch đại tín hiệu, chúng ta cho phân cực thuận mối nối B-E và phân cực nghịch mối nối B-C. Lúc này tín hiệu đưa vào là mức áp tăng giảm trên chân B, nó sẽ tác động vào dòng chảy trong transistor, tín hiệu lấy ra có thể trên chân E hay trên chân C. Hình vẽ dưới đây cho thấy ký hiệu của transistor, với loại transistor NPN, mũi tên trên chân E chỉ ra và với loại PNP mũi tên trên chân B chỉ vào.

Transistor BJT cũng có nhiều chủng loại, có nhiều kiểu chân. Khi cằm một transistor, chúng ta phải biết:

* Nó là transistor cao tần hay âm tần.

* Transistor khuếch đại analog hay transistor đóng mở digital hay transistor khóa switching * Transistor công suất nhỏ hay công suất trung bình hay transistor công suất lớn.

* Transistor có mức áp bão hoà nhỏ hay bình thường...

Có thể xem một transistor như 2 diode (nhưng không thể dùng 2 diode ghép lại để tạo ra một transistor). Do vậy khi kiểm tra một transistor, chúng ta thường dùng Ohm kế đo tính thuật nghịch của 2 diode này. Chúng ta còn biết: Diode ở mối nối BE có tính chịu áp nghịch thấp thường khoảng dưới 10V, diode ở mối nối CB thường có tính chịu áp nghịch cao, thường trên 60V đến vài ngàn volt.

Hình vẽ dưới đây cho thấy: Dòng điện bên chân B rất nhỏ, nó có thể điều khiển dòng điện rất lớn bên chân C, đó chính là tính khuếch đại của các transistor. Chúng ta đưa một tín hiệu có công suất nhỏ vào chân B, chúng ta có thể nhận được một tín hiệu lớn hơn, mạnh hơn trên chân C. Do đó, chân B gọi là ngả vào và chân C gọi là ngả ra. Khi dùng một transistor làm tầng khuếch đại, chúng ta thường thiết kế theo trình tự sau:

Thứ nhất: Phải lấy đúng phân cực DC. Với transistor NPN, mức volt trên chân B cao hơn E

khoảng một diode, mức volt chân C phải cao hơn chân B.

Thứ hai: Tìm cách đưa tín hiệu vào mạch khuếch đại và tìm cách thu lại tín hiệu ở ngả ra. Có

các kiểu vào ra như sau:

* Cho tín hiệu vào chân B và lấy tín hiệu ra trên chân C * Cho tín hiệu vào chân B và lấy tín hiệu ra trên chân E * Cho tín hiệu vào chân E và lấy tín hiệu ra trên chân C.

Vậy chân B luôn là ngả vào và chân C luôn là ngả ra, chỉ có chân E có thể lúc làm ngả vào và lúc làm ngả ra.

Thứ ba: Dùng kỹ thuật hồi tiếp để hoàn thiện mạch khuếch đại

Chúng ta biết, trong chế tạo, một transistor cho độ lợi dòng lớn thì công suất không lớn, một transistor công suất lớn thì hệ số khuếch đại dòng nhỏ. Vậy để có các transistor vừa có công suất lớn, vừa có độ lợi dòng lớn, người ta dùng cách ghép phức hợp còn gọi là cách ghép Darlington.

Transistor phức hợp sẽ cho hệ số khuếch đai dòng rất lớn và có công suất lớn.

Hình vẽ sau cho thấy transistor BJT có thể được dùng như một một biến trở chỉnh theo mức áp. Lúc này chân C không phân cực, chân CE xem như một biến trở, tín hiệu có thể qua lại theo hai chiều, nội trở CE sẽ thay đổi theo mức áp cao thấp trên chân B. Người ta thường dùng transistor theo kiểu này ở mạch ALC (Automatic Level Control), nó có tác dụng ổn định biên độ tín hiệu lúc máy ở mode ghi băng.

Mạch trên cho thấy, người ta dùng điện áp điều khiển đưa vào chân B và đóng mở dòng chảy ra trên chân C, dùng dòng này để kích thích một relay đặt trên chân C.

* Khi chân B có mức áp cao hơn 0.6V, khoảng 1V, thì transistor sẽ vào trạng thái bão hòa, dòng chảy ra trên chân C sẽ cấp cho cuộn dây trong relay, relay hút lá kim xuống và thay đổi vị trí của các tiếp điểm lá kim.

* Khi chân B mất áp, hay 0V thì transistor sẽ vào trạng thái ngưng dẫn, lúc này sẽ không có dòng chảy ra trên chân C, cuộn dây trong relay mất dòng, tiếp điểm lá kim bị nhã ra, nó lại thay đổi vị trí của tiếp điểm lá kim.

Do cuộn dây vốn là một kho chứa điện năng theo dạng dòng, nên khi có dòng điện chảy qua cuộn dây sẽ được nạp điện năng, và khi cuộn dây bị cắt dòng, lượng điện năng chứa trong cuộn dây sẽ hoàn trả lại cho mạch, nó hoàn trả điện năng dưới dạng phát ra điện áp ứng có biên rất cao, mức áp này có thể làm hư các linh kiện bán dẫn trong mạch, do đó ngang relay, người ta phải gắn một diode bảo vệ.

Có thể dùng quang trở gắn trên chân B để đóng mở Led đặt trên chân C.

* Trong hình bên trái, khi quang trở bị chiếu sáng, nó cho nội trở nhỏ, làm giảm mức áp trên chân B, nên transistor vào trạng thái tắt và không có dòng chảy ra trên chân C, nên Led tắt. Và khi quang trở bị che sáng Led sẽ sáng.

* Trong hình bên phải thì ngược lại. Khi quang trở được chiếu sáng, nó sẽ giảm nội trở làm tăng mức áp trên chân B, transistor dẫn điện, Led sáng và khi bị che sáng thì Led tắt.

Trong mạch, chiết áp 10K dùng chỉnh độ nhậy của mạch.

Một phần của tài liệu Giới thiệu về Linh kiện điện tử Khá chi tiết có ảnh kèm (Trang 48)