Dynamic-alternative path sử dụng thuật toán đường đi rộng nhất, ngắn nhất nhưng giới hạn bước nhảy là n+1, trong đó n là bước nhảy nhỏ nhất trong mạng chưa bị cắt giảm. Nếu không tìm thấy đường dẫn kả thi có bước nhảy nhỏ nhất, nó sẽ lựa chọn đường đi rộng nhất nếu không có đường đi khả thi, thì yêu cầu của lưu lượng cho 1 đường dẫn đảm bảo QoS sẽ bị từ chối.
Thuật toán đảm bảo băng thông 5 (dynamic alternative path).
Cho mạng G(N,A), số đo wi(a), i=1,2 với mỗi liên kết aЄA, trong đó w1 là băng thông, w2 là bước nhảy, điều kiện ràng buộc băng thông nhỏ nhất là C1, tìm đường dẫn Q từ điểm nguồn s đến điểm đích t sao bước nhảy nhỏ nhất là w2, gọi n=w2(Q). Cắt bớt mạng bằng cách xoá bỏ những liên kết có w1< C1. Tìm đường dẫn từ điểm nguồn s đến điểm đích t sao cho bước nhảy w2(P) nhỏ nhất trong khi w2(P)≤n+1. Nếu có nhiều đường dẫn có cùng bước nhảy thì chọn ra 1 đường có băng thông w1(P) lớn nhất.
2.6.2 Tóm tắt những thuật toán với ràng buộc băng thông:
Hình 2.5 biểu diễn mối quan hệ giữa các thuật toán. Thuật ngữ “shortest path algorithm” ở đây tức là thuật toán mà chỉ sử dụng bước nhảy như là 1 số đo. Nó tương đương với vấn đề 3, đường đi tối ưu, dù nó cho phép bất cứ một số đo
nào, chứ không phải chỉ 1 số đo, mà trong đó tất cả các tải trọng liên kết là 1. Còn thay đổi tải trọng thành băng thông và tìm ra đường đi rộng nhất lại không tương đương giống vấn đề 1, liên kết tối ưu.
Hình 2.5 Thuật toán băng thông ràng buộc
kết hợp chúng dẫn đến 2 thuật toán: đường đi ngắn nhất, rộng nhất và đường đi rộng nhất- ngắn nhất. Số đo cơ sở được tối ưu trước, nếu như có nhiều đường đi cùng tối ưu như vậy thì số đo cấp III sẽ được sử dụng. Thuật toán dap thêm kiểm soát vào thuật toán wsp. Nó sẽ loại bỏ lưu lượng mà đường dẫn được lựa chọn có nhiều hơn 1 bước nhảy dài hơn đường đi ngắn nhất.
Thuật toán khoảng cách ngắn nhất dùng thuật toán đường đi ngắn nhất cùng với các tải trọng liên kết là nghịch đảo của băng thông available.
Thuật toán đường đi ngắn nhất tăng cường băng thông - nghịch đảo thêm vùng cấm nhằm chặn những đường dẫn dài. Trong sơ đồ, thuật toán càng cao thì càng nhấn mạnh vào giới hạn bước nhảy.
2.7 Ràng buộc trễ đầu cuối
Định tuyến QoS đảm bảo băng thông rất được ưa chuộng trong nghiên cứu, nhưng đảm bảo độ trễ đầu cuối cũng là 1 phần quan trọng khác. Vấn đề là tính đường dẫn thoả mãn điều kiện ràng buộc đầu cuối D.
Toán bộ trễ đầu cuối bao gồm: độ trễ lan truyền trên mỗi liên kết dọc theo đường dẫn, và độ trễ trên toàn tuyến. Dạng thứ nhất là 1 hàm tính cộng đặc thù, còn dạng thứ 2 lại phụ thuộc vào tỉ lệ kết nối. Nó cần thiết giống như băng thông, nó cũng là liên kết ràng buộc. Tuy nhiên vấn đề định tuyến không phải là bất cứ vấn đề tổng hợp nào, bởi vì giá trị nhỏ nhất (2.8) (phụ thuộc vào 2 ràng buộc tính cộng) là độ trễ lan truyền d(a), bước nhảy n, ràng buộc tuyến và tỉ lệ r. Bởi vậy nó không phải là vấn đề định tuyến nhiều ràng buộc, nhưng chúng ta chỉ có 1 hàm đối tượng. Bước nhảy có thể chỉ nhận giá trị nguyên và bị giới hạn dưới mức ít nhất tổng số liên kết trong mạng. Các giá trị r cũng có thể bị giới hạn giống trong vấn đề định tuyến 9. Vấn đề này có thể giải quyết bằng polynomial time.
- Độ trễ đầu cuối là số đo . Giới hạn trên là D(P, r) = ∑ ∈ + + P a a d r c P n ) ( ) ( σ (2.9)
Trong đó P là đường đi, r: tỉ lệ dự trữ, n(P) là bước nhảy của đường đi P, C là kích thước gói lớn nhất, d(a) là độ trễ lan truyền của liên kết aЄA, là giá trị biến thiên liên quan đến burst lớn nhất.
Gọi D(P, r(P))= D(P) biểu hiện cho giá trị nhỏ nhất có thể của D(P,r) trong đó r(P) là tỉ lệ lớn nhất có thể trên đường đi bởi vậy:
Trong đó r(a) liên quan đến tỉ lệ của liên kết a. - Thuật toán chính xác:
Có m liên kết trên cấu trúc mạng, nhưng 1 số đường liên kết có tỉ lệ giống nhau nên số lượng các giá trị tỉ lệ khác nhau trên mạng k≤m. Gọi các tỉ lệ là rk. Bây giờ có k giá trị tỉ lệ khác nhau: r1<r2<…<rk.
(giống vấn đề 9 phần 3.4.2). Cách tìm đường dẫn khả thi: với mỗi k sao cho 1≤k≤K.
-Xoá tất cả các liên kết a có r(a)<rk
- Dùng thuật toán Bellman-Ford H lần, dùng độ trễ lan truyền d(a) như 1 hàm chi phí, và dùng cách giải quyết vấn đề 3(vấn đề tuyến tối ưu)
để xác định đường dẫn nào có độ trễ nhỏ nhất với tất cả các bước nhảy n,1≤n≤H.
+ Tính độ trễ của K.H đường dẫn để tìm:
a) đường dẫn với độ trễ đảm bảo nhỏ nhất, hoặc
b) đường dẫn khả thi với tỉ lệ dự trữ nhỏ nhất.
Độ phức tạp của thuật toán là O(MHK). Nếu k gồm bằng M thì O(HM2) quá cao. bởi vậy các thuật toán về lượng là cần thiết để giảm bớt sự phức tạp của nó.
-Thuật toán quantization (lượng)
Ứng dụng với tỉ lệ và bước nhảy. Trong trường hợp với tỉ lệ, thì các tỉ lệ liên kết được nhóm lại thành các nhóm để nhóm tỉ lệ j thuộc r1(1+Є)j…r1. (1+Є)j+1. Sau đó với mỗi nhóm, thực hiện việc cắt giảm. Có thể áp dụng các thuật toán nêu trên, mức bảo đảm độ trễ của thuật toán là 1+ Єlần, nhiều hơn giá trị thấp nhất. Giá trị € là để lựa chọn giữa độ chính xác hay độ phức tạp của thuật toán.
- Thuật toán chi phí nhỏ nhất:
Wchi phí(r,P)=C(r,n(P), D(P,r)) (3.0)
Có thể lựa chọn bằng cách cho các tiêu chuẩn của nó nhỏ nhất. Ví dụ hàm chi phí wchi phí=r làm cho tỉ lệ tiêu dùng nhỏ nhất, để cho wchi phí=n(P).r nhỏ nhất.
Cách khác là dùng tiêu chuẩn cân bằng tải mạng. Thuật toán Miniman Rate (làm nhỏ nhất tỉ lệ quan hệ): làm nhỏ nhất tỉ lệ lớn nhất của bất cứ liên kết nào tỉ lệ available.