Phản ứng nitrat hoá

Một phần của tài liệu Nghiên cứu tìm hiểu ứng dụng chitin, chitosan (Trang 28 - 31)

c. Tính tương hợp với các dung môi

1.5.2.4. Phản ứng nitrat hoá

Chitosan tương tự celluloze có đặc tính tạo nitrat. Tuy nhiên, hỗn hợp HNO3 – H2SO4 được dùng làm tác nhân để điều chế celluloze nitrat lại không thích hợp cho chitosan vì H2SO4 gây phản ứng cắt mạch chitosan. Có hai hướng điều chế chitosan nitrat như sau:

- Chitosan phản ứng với HNO3 loãng.

- Chitosan tác dụng với hỗn hợp của acid acetic loãng: anhydric acetic: acid nitric nguyên chất ở nhiệt độ thấp hơn 50C theo tỉ lệ 1:1:1:3.

Sản phẩm thu được từ hai quá trình trên đều là muối acid của chitosan nitrat, có mức độ thế là 1.65 dưới tác dụng của kiềm loãng sẽ chuyển sang chitosan nitrat có hàm lượng O-nitrat không đổi, thường thực hiện trong aceton 50%.

O O O2NO O3NNH3 O CH2ONO2 + O O O2NO NH2 O CH2ONO2 OH- 1.5.2.5. Phản ứng photphat hoá

Phản ứng photphat hóa xảy ra khi cho chitosan tác dụng với 15 phần pyridine và 5 phần phosphorus axychlorid ở 400C trong 5 giờ. Sản phẩm có hàm lượng P là 24%. Có hai phương pháp điều chế ester phosphat của chitosan:

- Dựa trên phương pháp điều chế celluloze phosphat, gia nhiệt chitosan với hổn hợp acid phosphoric và ure. Thường dùng một chất lỏng trơ để xúc tiến phản ứng như DMF, toluen.

- Thực hiện phản ứng của chitosan với pentoxid P ở nhiệt độ từ 0 → 50C. Trong đó, chitosan đã được hoà tan trước trong methan sulphonic acid.

1.5.2.6. Phản ứng sulfat hoá

Quá trình sulfat hoá xảy ra bằng cách xử lý chitosan, tái tạo tủa, chuyển hoá dung môi thông qua chuỗi: nước → ethanol → ethanol nguyên chất → di ethylether → DMF và phức SO3- DMF trong lượng thừa DMF, phản ứng được duy trì ở nhiệt độ phòng. Sản phẩm tạo thành một nhóm N-sulphate và O-sulphate.

Chitosan–NH2 +O3S-O-CH = N(CH3)2 → Chitosan–NH–SO2OH + HCON(CH3)2

1.5.2.7. Phản ứng alkyl hoá khử

Phản ứng này dùng để điều chế các dẫn xuất N- alkyl của chitosan. Tổng quát, phản ứng xảy ra như sau:

R1R2NH + C O R1R2N C R1R2N CH

Trong đó, giai đoạn đầu xảy ra chậm, giai đoạn thứ hai xảy ra nhanh với sự có mặt của NaCNBH, ở pH = 4.

1.5.2.8. Phản ứng khử nhóm amin và cắt mạch bằng HNO2

Acid nitrơ được được sử dụng để thực hiện phản ứng deamin hoá và depolymer hoá chitosan, phản ứng xảy ra càng mạnh khi có mặt của AgNO3. Khi thực hiện phản ứng

Bảng 1.3: Một số thông số đặc trưng của chitin và chitosan

depolymer hoá chitosan ở nhiệt độ phòng bằng HCl 3M thì cần 160 giờ. Trong khi đó nếu dùng HNO2 thì chỉ cần 5 phút ở nhiệt độ phòng. Tuy nhiên để thực hiện tốt phản ứng deamin hoá chitosan, người ta thaybằng anhydrid N2O3. Cơ chế phảnứng như sau: trước hết hình thành ion diazonium, ion này phân hủy tạo ion carbonium, gây ra sự cắt mạch.

1.5.2.9. Tính tạo phức

Trong môi trường acid, chitosan bị proton hoá nên nó phản ứng được với các polyanion tạo phức. Khi pH > 4, nó tạo phức được với các hợp chất màu và kim loại nặng. Các nhà khoa học giả thuyết rằng do đôi electron tự do của nhóm amin đã giúp chitosan tạo được liên kết cho nhận với các đối chất. Tuy nhiên, còn phải xem xét tới các hiện tượng đơn giản như hấp phụ, tương tác tĩnh điện và sự trao đổi ion. Bên cạnh đó, môi trường nhóm chức amin cũng làm tăng hiệu lực phức của chitosan.

Sự tạo phức giữa chitosan và các ion kim loại nói chung rất khác nhau. Cấu trúc của phức chất theo đó cũng ít được công nhận. Tuy nhiên, phức chất giữa chitosan và đồng, nikel đã được rất nhiều nhà nghiên cứu xác định và chỉ ra ion Cu(II) hoặc Ni(II) là ion trung tâm, một ligand là nhóm –NH2, 2 ligand còn lại là nhóm –OH ở C3 và C6. Tuy nhiên, ligand thứ tư vẫn có hai ý kiến trái ngược nhau, một ý kiến cho rằng đó là một phân tử nước, một ý kiến cho rằng đó là Og nối giữa 2 vòng D – Glucoz.

Theo Tanja Becker, Michael Schlaak và Henry Strasdeit (2000), khả năng hấp phụ của chitosan đối với từng ion kim loại như sau: Cu(II) > Cd(II) ≈ Ni(II) > Pb(II)[18]

Thông số Chitin Chitosan Tên hoá học Polyacetylaminglucoza Polyaminoglucoza

Công thức phân tử (C8H13O5N)n (C6H11O4N)n Trọng lượng phân tử (203)n (161)n Hàm lượng nitơ lý thuyết 6,9% 8,7% Hàm lượng nitơ thực tế 6% - 7% 7% - 8,4% Mứcđộ deacetyl hoá 10% - 15% 80% - 90% Độ ẩm < 10% <10% Độ tro <2% <1% Hàm lượng protein <0,5% 0,3%

Hình 2.1 ứng dụng của chitosan trong bảo quản hoa quả.

CHƯƠNG 2: NGHIÊN CỨU ỨNG DỤNG

Một phần của tài liệu Nghiên cứu tìm hiểu ứng dụng chitin, chitosan (Trang 28 - 31)