7. Tín hiệu cảnh báo sớm của cuộc khủng hoảng
7.2. Nợ ước tính vượt quá, tín hiệu cảnh báo sớm của một cuộc khủng hoảng
Một tín hiệu cảnh báo sớm của một cuộc khủng hoảng nợ là một loạt các khoản nợ quá mức Ψ (t) = f (t) - f *(t)> 0. Như hình 3/phương trình số (19), sự mất mát của tăng trưởng từ tỷ lệ nợ không tối ưu trong một thời gian (0, T) là
(19) E [ln X*(T) - ln X(T)] = ∫T [W*(t) - W(t)]dt = (1/2)∫T σ2Ψ(t)2dt.
Khi tỷ lệ nợ f (t) vượt quá f-max trong hình 3, tăng trưởng kỳ vọng là số âm và rủi ro là rất cao. Một cuộc khủng hoảng có thể khi ∫T σ2 Ψ (t)2dt lớn. Câu hỏi tiếp theo là: Có các biện pháp thích hợp nào trong thực tế và tỷ lệ nợ tối ưu để đánh giá Ψ(t) là gì?
Để thực hiện các biện pháp thay đổi về tỷ lệ nợ và các biến kinh tế trọng yếu hoàn toàn có thể so sánh được, tôi sử dụng các biến được chuẩn hóa trong đó sự tiêu chuẩn hóa (Normalization) (N) của một biến Z(t) gọi là N (Z) = [Z (t) – trung bình Z] / độ lệch chuẩn. Giá trị trung bình của N(Z) bằng 0 và độ lệch chuẩn của nó là độ lệch chuẩn đơn vị.
Đối với tỷ lệ nợ thực tế tôi sử dụng gánh nặng nợ i(t)L (t)/ Y(t). Có một sự không đồng nhất lớn lãi suất tính cho khách hàng vay dưới chuẩn phụ thuộc vào các điều khoản của thế chấp, nên rất khó để biểu diễn chính xác những gì tương ứng với i (t) trong phân tích ở trên. Do đó tôi sử dụng "Thanh toán dịch vụ nợ hộ gia đình như là một phần trăm của thu nhập cá nhân khả dụng" (Đây là loạt TDSP trong FRED. như một biện pháp của iL /Y gánh nặng nợ. Điều này bao gồm tất cả nợ hộ gia đình, không chỉ nợ thế chấp, vì vốn tăng thêm sự gia tăng nói chung trong tiêu thụ và vay nợ. Giá trị tiêu chuẩn hóa của dịch vụ nợ N(f) hoặc gánh nặng nợ (f), là phương trình (20), được vẽ như trong hình 4 là DEBTSERVICE. Điều này được đo bằng đơn vị độ lệch chuẩn từ giá trị trung bình bằng 0. Có một sự sai lệch đáng kể trên giá trị trung bình từ năm 1998 đến năm 2006. Điều này trùng hợp với sự tăng mạnh tỷ lệ chỉ số giá nhà ở P/ thu nhập khả dụng Y, P / Y = PRICEINC trong hình 2. Trong thời gian này, có độ tăng nhiều hơn hai độ lệch chuẩn trong P / Y và tăng hai độ lệch chuẩn trong iL/Y dịch vụ nợ/thu nhập khả dụng.
(20) N(f) = DEBTSERVICE = [i(t)L(t)/Y(t) – giá trị trung bình] /độ lệch chuẩn.
Như đã giải thích kết hợp với hình 3 sẽ luôn có một lỗi kỹ thuật trong dự toán tỷ lệ nợ tối ưu. Lý do chính là khuynh hướng giá ρ không thể biết chắc chắn, nhưng tôi yêu cầu không vượt quá tỷ lệ lãi suất. Vì vậy một cách tiếp cận khá linh hoạt sẽ được thực hiện để ước lượng tỷ lệ nợ tối ưu f * (t).
Tỷ lệ nợ tối ưu f* là dựa trên phương trình (16), với khống chế rằng r = ρ - i> 0. Từ các biểu đồ của vốn tăng thêm trong hình 1, vốn tăng thêm trung bình là 5.4%/năm với độ lệch chuẩn là 2.9%. Nó là hợp lý để lập luận rằng, trong một thời gian dài, sự tăng giá thực sự của giá nhà đất đã không có sự khác biệt đáng kể từ "lãi suất thế chấp", (i-ρ) = r = 0. Tỷ lệ nợ tối ưu từ (16) được viết thành (16a) dưới đây. Tỷ lệ nợ tối ưu tiêu chuẩn là N(f*) trong phương trình (21).
(16a) f*(t) = [(β(t) - (1/2 σ2 - αy(t)] / σ2.
Số hàng chính là [(β (t) - β)] độ lệch của lợi nhuận trên vốn từ giá trị trung bình của nó trong toàn bộ thời kỳ. Chúng ta phải ước lượng β (t), hiệu suất của vốn. Các hiệu suất của vốn nhà là tiềm ẩn thu nhập cho thuê ròng / giá trị của ngôi nhà cộng với một hiệu suất tiện lợi trong việc sở hữu nhà của một người. Giả sử rằng hiệu suất tiện lợi trong việc sở hữu một nhà đã được tương đối ổn định. Xấp xỉ thu nhập β(t) bằng cách sử dụng tỷ lệ thu nhập cho thuê/ thu nhập cá nhân khả dụng. Tỷ lệ này không nhạy cảm đến mức như độ giá nhà ở, trong khi giá thuê / giá trị của nhà ở được thống kê liên quan ngược chiều với mức giá nhà đất.
Trong hình 4/phương trình (22) biến RENTRATIO là thu nhập được tiêu chuẩn hóa, được đo theo đơn vị của độ lệch chuẩn từ giá trị trung bình β. Tỉ lệ này tương đối ổn định từ năm 1994 đến năm 2002 và sau đó giảm mạnh.
(22) RENTRATIO ~ [β(t) - β] / σ(β)
= (thu nhập cho thuê / thu nhập cá nhân khả dụng – giá trị trung bình) / độ lệch chuẩn.
Các biến thứ hai trong phương trình tỷ lệ nợ tối ưu (16a) là y (t), độ lệch giá của tài sản từ khynh hướng trong phương trình (9). Người ta không thể chắc chắn về những gì là giá trị khuynh hướng phù hợp của ρ <i, nhưng vốn tăng thêm được tiêu chuẩn hóa CAPGAIN mô tả trong hình 2 cho chúng ta manh mối. Giá trị vốn trung bình tăng thêm được tiêu chuẩn hóa tại 0. Từ năm 1999 đến năm 2004 nó tăng nhanh chóng thành 2,5 độ lệch chuẩn trên giá trị trung bình vào năm 2004. Vì vậy người ta có thể tin tưởng rằng độ lệch y (t) từ khuynh hướng là số dương và tăng suốt trong thời gian này.
Đưa cùng hai thành phần của tỷ lệ nợ tối ưu trong phương trình (21), một ước tính một sự suy giảm mạnh mẽ trong các thước đo tỷ lệ nợ tối ưu. Việc tiêu chuẩn hóa RENTRATIO trong (22) là một biện pháp ràng buộc trên của tỉ lệ nợ tối ưu, phương trình (23) trong giai đoạn 2000 - 2004.
Cả hai thực tế (phương trình (20)) và tối ưu phương trình (23)) được vẽ dồ thị trong dạng tiêu chuẩn hóa trong hình 4.
Hình 4 : Tín hiệu cảnh báo sớm: Nợ quá mức Ψ (t) = N [f (t)] - N [f * (t)].
N [f (t)] = DEBTSERVICE = (dịch vụ nợ hộ gia đình theo phần trăm thu nhập khả dụng – giá trị trung bình) / độ lệch chuẩn. N [f * (t)] = RENTRATIO = (thu nhập cho thuê / thu nhập cá nhân khả dụng – giá trị trung bình) / độ lệch chuẩn; Nguồn FRED
Câu hỏi tiếp theo là làm thế nào để ước lượng nợ quá mức Ψ (t) tương ứng với phương trình 17/hình 3, và phù hợp với các ước tính thay thế của các khoản nợ tối ưu.
Tôi ước lượng nợ quá mức Ψ (t) = (f (t) - f * (t)) bằng cách sử dụng sự khác biệt giữa hai biến được tiêu chuẩn hóa N(f) – N(f *), phương trình (24). Sự khác biệt này được đo bằng độ lệch chuẩn.
Nợ vượt mức được vẽ trong đồ thị hình 5 tương ứng với sự khác biệt Ψ (t) = f * (t) - f (t) trên trục hoành trong hình 3, đo bằng độ lệch chuẩn. Xác suất của một sự sụt giảm giá trị ròng Pr(d ln X (t) <0) là liên quan tích cực đến Ψ (t) các khoản nợ quá mức. Khi nợ quá mức gia tăng, tăng trưởng kỳ vọng giảm và rủi ro gia tăng, phương trình (25).
(25) Pr (d ln X (t) <0) = H (Ψ (t)), H '> 0, H (0) = W *.
Hình 5. Nợ vượt mức = Dịch vụ nợ - Tỷ lệ thuê. Sự tiêu chuẩn hóa.
Giả sử rằng trong toàn bộ thời gian 1980 - 2007 tỷ lệ nợ không quá nhiều. Trong thời gian 2000-2004, vốn tăng lên cao và lãi suất thấp dẫn đến việc tăng giá nhà liên quan đên thu nhập khả dụng và dẫn đến gia tăng trong tỷ lệ nợ. Hình 2 biểu thị rõ mối quan hệ này.
Qua năm 2005-06 tỷ lệ giá nhà ở / thu nhập khả dụng vào khoảng ba độ lệch tiêu chuẩn so với giá trị trung bình dài hạn. Xem PRICEINC trong hình 2. Việc tăng
mạnh này đã cảnh báo một số nhà kinh tế những người tin rằng thị trường nhà ở đã được định giá quá cao một cách đáng kể. Như chỉ ra trong phần 2 ở trên, họ chỉ là thiểu số. Điều này chắc chắn có ảnh hưởng không đáng kể đối với thị trường phái sinh và sự lạc quan của "Quants".
Những lợi thế của việc sử dụng nợ quá mức Ψ (t) trong hình 5 như một tín hiệu cảnh báo sớm so với tỷ lệ chỉ số giá nhà ở / thu nhập khả dụng được Ψ (t) tập trung vào yếu tố cơ bản quyết định tỷ lệ nợ tối ưu cũng như tỷ lệ thực tế. Xác suất của sự sụt giảm trong giá trị ròng và cuộc khủng hoảng liên quan trực tiếp đến các khoản nợ quá mức. Hơn nữa, việc sử dụng các biến được chuẩn hóa cho thấy tầm quan trọng của các khoản nợ dư thừa trong số hạng của độ lệch chuẩn, và nhiều hơn nữa số ước lượng có ý nghĩa có thể được thực hiện xác suất của khủng hoảng.
Dựa trên hình số 5, tín hiệu cảnh báo sớm được đưa ra vào đầu năm 2002. Đến năm 2005, các khoản nợ vượt mức là hai độ lệch chuẩn trên giá trị trung bình. Do đó tỷ lệ nợ là trong khu vực của f-max ở hình 3. Các khoản nợ thực tế đã được gây ra bởi vốn tăng thêm vượt quá mức lãi suất. Các khoản nợ chỉ có thể được thanh toán từ vốn tăng thêm. Tình trạng nàykhông bền vững. Khi vốn tăng thêm giảm xuống dưới mức lãi suất, các khoản nợ không thể thanh toán. Một cuộc khủng hoảng là không thể tránh khỏi.
8. Kết luận
Với mô hình kinh tế vĩ mô mà lý thuyết thị trường hiệu quả chiếm ưu thế trong nền kinh tế, cuộc khủng hoảng 2007-08 đã khiến Fed và các nhà học giả bất ngờ. FED đã không cảm nhận được bong bóng giá nhà ở. Greenspan đã từng nói năm 2004 rằng việc gia tăng giá trị nhà là "được đánh giá là không đủ để tăng mối lo ngại chính của chúng ta”. Bernanke cho biết (2005) là bong bóng nhà đất là một "khả năng không chắc xảy ra". Trong năm 2007, ông cho rằng, FED không "hiệu ứng lan tỏa không mong đợi từ thị trường cho vay dưới chuẩn với phần còn lại của nền kinh tế ".
Peter Clark (2009) đã viết rằng "không có thước đo giá trị cơ bản hoặc chủ yếu sẽ cung cấp luôn dự đoán chính xác về bong bóng đang nổi lên, nhưng câu hỏi trước là
liệu nó có hữu ích cho cho việc san bằng những việc thực thi tiên liệu được về định giá giá trị thị trường. Dưới ánh sáng của những chi phi khổng lồ về bong bóng nhà đất và tín dụng trả lời được. Kohn - Phó Chủ tịch Fed - chỉ ra rằng suy nghĩ của FED có thể thay đổi. Ông đã viết (2009, trích dẫn bởi Clark): "Là các nhà nghiên cứu, chúng ta cần phải trung thực về khả năng có hạn của chúng ta để đánh giá "giá trị cơ bản" của một tài sản hoặc để dự đoán giá của nó. Nhưng bong bóng nhà đất và tín dụng đã có một chi phí đáng kể. Nghiên cứu về giá tài sản ... giúp xác định những rủi ro và thông báo các quyết định về chi phí và lợi ích từ một quyết định chính sách tiền tệ hoặc sự điều chỉnh cố gắng (attempting) có thể quy định hoặc cố gắng để giải quyết với một bong bóng giá tài sản tiềm tàng (potential)"
Phản ứng phổ biến rộng rãi đối với cuộc khủng hoảng là những quyết định tùy ý được đề nghị đòn bẩy và rủi ro thấp hơn trong hệ thống tài chính. Các đề xuất còn thiếu tính hợp lý kinh tế về tác dụng mong muốn của những thị trường tài chính để phân bổ tiết kiệm cho đầu tư và cách để quản lý rủi ro tối ưu.
Các câu hỏi chính là: phương pháp gì có thể phát hiện những bong bóng? Những thành quả kinh nghiệm của họ là gì? Các cơ sở lý thuyết và của các biện pháp thực nghiệm là gì? Như đã giải thích ở trên, các biện pháp trong tài liệu thiếu cơ sở lý thuyết và thành quả kinh nghiệm của họ như những tín hiệu cảnh báo sớm thật mơ hồ. Tôi xác định lại một số câu hỏi đặt ra trong phần 5 và mỗi câu hỏi được trả lời thế nào thông qua phân tích điều khiển tối ưu ngẫu nhiên (SOC).
Thứ nhất: một nguy cơ tối ưu trong thị trường khi sự phát triển của giá tài sản trong trương lai là không dự đoán được? Thế nào là một rủi ro quá mức? SOC trả lời vấn đề này bằng việc suy ra một tỷ lệ/giá trị ròng tối ưu hay còn gọi là đòn bẩy làm cân bằng giữa thu nhập kỳ vọng và rủi ro. Tỷ lệ nợ tối ưu làm tối đa hóa giá trị kỳ vọng của logarit giá trị ròng sau một thời gian chịu quá trình ngẫu nhiên về giá tài sản. Tỷ lệ vốn trên giá trị ròng tối ưu Tỷ lệ tối ưu của vốn (tức là tài sản) / giá trị ròng theo sau trực tiếp từ đòn bẩy tối ưu. Đòn bẩy tối ưu và những nhu cầu về vốn là thay đổi theo thời gian nên các nguyên tắc cơ bản cũng thay đổi theo thời gian.
Mối nguy hiểm từ “định giá quá cao” ("overvaluation") của giá nhà đất là các khoản nợ được sử dụng để tài trợ mua là quá nhiều. Đồ thị hình 6 biểu đồ tỷ lệ giá nhà ở / thu nhập khả dụng PRICEINC và các dịch vụ nợ DEBTSERVICE, là tiền lãi phải trả/ thu nhập khả dụng. Giữa chúng có mối quan hệ tỷ lệ thuận rất lớn. SOC tập trung vào nợ, cái có thể gây ra một cuộc khủng hoảng.
Hình 6: PRICEINC = Tỷ lệ giá nhà ở / thu nhập khả dụng. DEBTSERVICE = Dịch vụ nợ/thu nhập khả dụng. Cả hai biến đều được chuẩn hóa (phân phối chuẩn) (normalized).
Thứ hai: làm thế nào để xây dựng một mô hình và công thức về xu hướng giá tài sản kỳ vọng để tránh những bong bóng và sự phá sản tiếp theo sau đó? Thiếu sót chủ yếu của thị trường là dự đoán xu hướng của giá nhà đất đã được dựa trên các phân bố xác suất qua gần đây. Đây là giai đoạn giá tài sản đang tăng trưởng ở tỷ lệ cao hơn lãi suất. Các khoản cho vay chỉ có thể được phục vụ từ lợi nhuận đầu tư. Xác suất phân phối này là không bền vững. Các phân tích SOC khống chế xu hướng
của giá tài sản luôn nhỏ hơn hoặc bằng lãi suất.Qua đó hạn chế "không có bữa ăn trưa miễn phí" bị tác động mạnh trong quá trình tối ưu hóa.
Thứ ba: Các tín hiệu cảnh báo sớm của một cuộc khủng hoảng là gì? Các phân tích SOC xuất phát từ "Dư thừa nợ" được định nghĩa là sự khác biệt giữa tỷ lệ nợ thực tế và tỷ lệ nợ tối ưu. Tỷ lệ tối ưu phụ thuộc vào hiệu suất của vốn trừ đi lãi suất thực, phương sai của các tăng vốn và độ lệch chuẩn của giá tài sản từ một xu hướng, mà không vượt quá mức lãi suất. Tỷ lệ nợ/ đòn bẩy tối ưu có thể đo lường một cách khách quan.
Khi tỷ lệ nợ vượt quá tỷ lệ tối ưu, tăng trưởng của giá trị ròng kỳ vọng giảm và rủi ro tăng lên. Kể từ khi xác suất các khoản lỗ và phá sản liên quan trực tiếp đến việc nợ quá mức, các khoản nợ quá mức là một tín hiệu cảnh báo sớm của một cuộc khủng hoảng.
Theo kinh nghiệm, đơn vị đo của thực tại, các khoản nợ tối ưu và dư thừa thực tế, tối ưu và dư thừa được thể hiện. Các biện pháp xác suất có thể được kết hợp với nợ quá mức, và xác suất của một cuộc khủng hoảng được xác định rõ ràng hơn. Cách tiếp cận về mặt lý thuyết này là một tín hiệu cảnh báo hữu ích hơn là "căng thẳng thử nghiệm" tùy ý (arbitrary “stress testing”).
Có nhiều vấn đề đặt ra chưa được giải quyết được còn lại để nghiên cứu thêm.Trước tiên, có thể cho rằng Dự trữ Liên bang có thể có liên quan với bong bong thị trường tài sản, chính sách tiền tệ của họ nên được quản lý như thế nào? Thứ hai, thế nào là một hệ thống quy chế tối ưu để tránh các cuộc khủng hoảng tiếp theo?
Các thành viên của nhóm:
STT Họ và tên
1 Hoàng Ngọc Thùy Liên 2 Lã Thị Hương Loan 3 Nguyễn Thị Thanh Thảo 4 Đỗ Nguyễn Xuân Thảo 5 Nguyễn Diệu Thư