Để có thể đánh giá và so sánh hiệu năng của các phương pháp mô hình hóa màu da là không dễ, vì mỗi phương pháp thường được đề xuât của một nhóm các nhà nghiên cứu và
được thử nghiệm trên cơ sơ dữ liệu riêng. Và chưa có một cơ sở dữ liệu chuẩn nào được công bố rộng rãi cho vấn đề này. Cơ sở dữ liệu huấn luyện và kiểm định được biết đến nhiều nhất đó là cơ sở dữ liệu của Compaq.
Trong bảng so sánh được đưa ra dưới đây, là kết quả tốt nhất mà mỗi phương pháp đạt được, được tổng hợp bởi [Valimir Vezhnevets, Vassili Sazonov Alla Andreeva ], với kết quả thử nghiệm dựa trên có ở dữ liệu của Compaq nêu trên.
Bảng 3.1 sau đây sẽ so sánh hệ số phát hiện đúng và không đúng của từng phương pháp. Mặc dù các phương pháp là khác nhau về dữ liệu huấn luyện và tập dữ liệu test, cũng như chiến lược huấn luyện, bảng dưới đây vẫn mô tả một bức tranh toàn cảnh về hiệu năng của các phương pháp [7].
Ưu điểm chính của các phương pháp sử dụng các ngưỡng để phân lớp điểm ảnh là màu da hay không đó là tính đơn giản và tính trực giác cao trong các quy tắc phân lớp. Tuy nhiên, điểm khó khăn đó là cần phải tìm được cả một không gian màu tốt và các quy tắc xứng đáng trong không gian đó. Phương pháp được đề xuất hiện này sử dụng thuật toán máy học để có thể tìm được không gian và các quy tắc thích hợp, tuy nhiên đề xuất này vẫn đang là một vấn đề mở trong tương lai
Các phương pháp sử dụng mô hình hóa không tham số thật sự nhanh trong cả việc huấn luyện và phân lớp, độc lập với phân bố hình dạng của màu da và cả không gian màu. Tuy nhiên, phương pháp này lại yêu cầu quá nhiều bộ nhớ lưu trữ và phụ thuộc cố dịnh vào tập dữ liệu huấn luyện.
Các phương pháp mô hình hóa có tham số cũng xử lý khá nhanh. Hơn nữa chúng lại có khả năng tự tạo ra các dữ liệu huấn luyện phù hợp, chúng được miêu tả bằng một số lượng không nhiều các tham số và đặc biệt chúng cần không đáng kể bộ nhớ lưu trữ. Tuy nhiên, chúng có thể sẽ thực sự chậm (giống như mô hình kết hợp giữa trên phân phối Gaussian) trong cả huấn luyện và làm việc, và hiệu năng của chúng phụ thuộc nhiều vào hình dạng của phân phối màu da. Bên cạnh đó, hầu hết các phương pháp mô hình hóa màu da có tham số đều bỏ qua những thống kê về màu không phải là tham số.