[N1] L.H. Hố, L.T.P. Ngọc (2004), Một ghi chú về tính compact, liên thơng của tập hợp nghiệm của bài tốn tiến hố, Tạp chí khoa học Khoa học Tự nhiên Trường ĐHSP Tp. HCM, Số 4(38), 3-13.
[N2] L.H. Hố, L.T.P. Ngọc (2006), Boundary and initial value problems for second order neutral functional differential equations, Electronic J. Diff. Equat., No.62, 1-19.
[N3] L.H. Hố, L.T.P. Ngọc (2006), The connectivity and compactness of so- lution set of an integral equation and weak solution set of an initial-boundary value problem, Demonstratio Math. Vol.39, No.2 , 357- 376.
[N4] L.T.P. Ngọc, N.T. Long (2006), On a fixed point theorem of Kras- nosel’skii type and applications to integral equations, Fixed Point Theory and Applications, Hindawi Publishing Corporation, Article ID 30847, 1-24.
[N5] N.T. Long, L.T.P. Ngọc (2006), Bài tốn hỗn hợp cho phương trình sĩng phi tuyến chứa tốn tử Kirchhoff, Tạp chí khoa học Khoa học Tự nhiên Trường ĐHSP Tp. HCM, Số 8(42), 44-61.
[N6] N.T. Long, L.T.P. Ngọc (2007), On a nonlinear Kirchhoff-Carrier wave equation in the unit membrane: The quadratic convergence and asymptotic expansion of solutions, Demonstratio Math. Vol.40, No.2 , 365- 392.
[N7] N.T. Long, L.T.P. Ngọc, On a nonlinear Kirchhoff-Carrier wave equa- tion in the unit membrane I, (Bài gửi cơng bố).
[N8] L.T.P. Ngọc, N.T. Long,The Hukuhara-Kneser Property for a nonlinear integral equation, (Bài gửi cơng bố).
[N9] N.T. Long, L.T.P. Ngọc (2007), A wave equation associated with mixed nonhomogeneous conditions: The compactness and connectivity of weak so- lution set, Abstract and Applied Analysis, Hindawi Publishing Corporation, Article ID 20295, 1-17.
[N10] L.T.P. Ngọc (2007),Applying fixed point theory to the initial value prob- lem for the functional differential equation with finite delay, Vietnam Journal of Mathematics, 35:1, 43-60.
[1] M. A. Abdou, W. G. El-Sayed and E.I. Deebs (2005), "A solution of a nonlinear integral equation", App. Math. Comp., 160, pp. 1-14.
[2] R.A. Adams (1975), Sobolev Spaces, Academic Press, NewYork.
[3] C. Avramescu (2003), "Some remarks on a fixed point theorem of Kras- nosel’skii", Electronic J. Qualitative Theory of Diff. Equat, 5, pp. 1-15. [4] C. Avramescu and C. Vladimirescu (2005), Asymptotic stability results
for certain integral equations, Electronic J. Diff. Equat., 126, pp. 1-10. [5] M. E. Ballotti (1985), "Aronszajn’s theorem for a Parabolic partial dif-
ferential equation", Nonlinear Anal. Theory, Methods and Applications, 9, 11 , pp. 1183-1187.
[6] D.T.T. Binh, A.P.N. Dinh and N.T. Long (2001), "Linear recursive schemes associated with the nonlinear wave equation involving Bessel’s operator", Math. Comp. Modelling, 34, pp. 541-556.
[7] T.A. Burton (1998), "A fixed-point theorem of Krasnosel’skii", Appl. Math. Letters, 11(1), pp. 85 - 88.
[8] T.A. Burton and C. Kirk (1998), " A fixed-point theorem of Krasnosel’skii type", Math. Nach., 189, pp. 23 - 31.
[9] G.F. Carrier (1945), " On the nonlinear vibrations problem of elastic string", Quart. J. Appl. Math., 3, pp. 157-165.
[10] C. Corduneanu (1991), Integral equations and applications, Cambridge University Press, New York.
[11] K. Czarnowski (1996), "Structure of the set of solutions of an initial- boundary value problem for a Parabolic partial differential equation in an unbounded domain", Nonlinear Anal. Theory, Methods and Applications, 27, 6, pp. 723-729.
[12] K. Deimling (1985), Nonlinear Functional Analysis, Springer, NewYork. [13] Y. M. Dib, M. R. Maroun, Y. N. Raffoul (2005), "Periodicity and sta- bility in neutral nonlinear differential equations with functional delay",
Electronic J. Diff. Equat., No.142 , pp. 1-11.
[14] A.P.N. Dinh and N.T. Long (1986), "Linear approximation and asymp- totic expansion associated to the nonlinear wave equation in one dimen- sion", Demonstratio Math., 19, pp. 45-63.
[15] L. A. Dung and D. H. Tan (2007), "Some applications of the KKM- mapping principle in hyperconvex metric spaces", Nonlinear Anal., 66, pp. 170-178.
[16] Y. Ebihara, L.A. Medeiros and M.M. Miranda (1986), "Local solutions for a nonlinear degenerate hyperbolic equation", Nonlinear Anal., 10, pp. 27-40.
[17] K. Goebel and W. A. Kirk (1990), Topics in metric fixed point theory, Cambridge University Press, New York.
[18] J. Hale (1998), Asymptotic behavior of dissipative systems, Mathemati- cal Surveys and Monographs, 25, American Mathematical Society, Prov- idence, RI.
[19] J. Henderson (1995), Boundary Value Problems for Functional Differen- tial Equations, World Scientific Publishing, USA.
[20] H. R. Henriquez (1994), "Periodic Solutions of Quasi-Linear Partial Functional Differential Equations with Unbounded Delay",Funkcialaj Ek- vacioj, 37, pp. 329-343.
[21] L.H. Hoa and K. Schmitt (1994), " Fixed point theorem of Krasnosel’skii type in locally convex spaces and applications to integral equations", Re- sults in Math., 25, pp. 290-314.
[22] L.H. Hoa and K. Schmitt (1995), "Periodic solutions of functional differ- ential equations of retarded and neutral types in Banach spaces", Bound- ary Value Problems for Functional Differential Equations, pp. 177-185. [23] M. Hosoya and Y. Yamada (1991), " On some nonlinear wave equation
I: Local existence and regularity of solutions", J. Fac. Sci. Univ. Tokyo. Sect. IA, Math., 38, pp. 225-238.
[24] G.R. Kirchhoff (1876), Vorlesungen ¨uber Mathematische Physik:
Mechanik, Teuber, Leipzig.
[25] M. A. Krasnosel’skii and P.P. Zabreiko (1984), Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin Heidelberg New York Tokyo. [26] S. Lang (1969),Analysis II, Addison - Wesley, Reading, Mass., California
London.
[27] J.L. Lions (1969), Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dunod, Gauthier -Villars, Paris.
[28] J.Liu, T.Naito, N.V.Minh (2003), "Bounded and periodic solutions of infinite delay evolution equations", J. Math. Anal. Appl. 286, 705 -712. [29] N.T. Long and A.P.N. Dinh (1992), "On the quasilinear wave equation:
utt−∆u+ f(u, ut) = 0 associated with a mixed nonhomogeneous condi- tion", Nonlinear Anal., 19, pp. 613-623.
[30] N.T. Long, et al. (1993), "On the nonlinear vibrations equation with a coefficient containing an integral", Comp. Maths. Math. Phys., 33, pp. 1171-1178.
[31] N.T. Long and A.P.N. Dinh (1995), "Periodic solutions of a nonlinear parabolic equation associated with the penetration of a magnetic field into a substance", Comp. Math. Appl., 30, pp. 63-78.
[32] N.T. Long and A.P.N. Dinh (1995), "A semilinear wave equation asso- ciated with a linear differential equation with Cauchy data", Nonlinear Anal., 24, pp. 1261-1279.
[33] N.T. Long and T.N. Diem (1997), "On the nonlinear wave equation
utt−uxx = f(x, t, u, ux, ut) associated with the mixed homogeneous con- ditions", Nonlinear Anal., 29, pp. 1217-1230.
[34] N.T. Long, A.P.N. Dinh and D.T.T. Binh (1999), "Mixed problem for some semilinear wave equation involving Bessel’s operator",Demonstratio Math., 32, pp. 77-94.
[35] N.T. Long and T.M. Thuyet (1999), "On the existence, uniqueness of solution of the nonlinear vibrations equation", Demonstratio Math., 32, pp. 749-758.
[36] N.T. Long, A.P.N. Dinh and T.N. Diem (2002), "Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator", J. Math. Anal. Appl., 267, pp. 116-134.
[37] N.T. Long (2002), "On the nonlinear wave equation utt −
B(t,kuxk2)uxx = f(x, t, u, ux, ut)associated with the mixed homogeneous conditions", J. Math. Anal. Appl., 274, pp. 102-123.
[38] N.T. Long (2005), "Nonlinear Kirchhoff-Carrier wave equation in a unit membrane with mixed homogeneous boundary conditions", Electronic J. Diff. Equat., 138, pp. 1-18.
[39] R. Ma (1998), "Positive solutions of a nonlinear three-point boundary value problem", Electronic J. Diff. Equat., 34, pp. 1-8.
[40] L.A. Medeiros (1994), "On some nonlinear perturbation of Kirchhoff- Carrier operator", Comp. Appl. Math., 13, pp. 225-233.
[41] LA. Medeiros, J. Limaco and S.B. Menezes (2002), " Vibrations of elastic strings: Mathematical aspects, Part one", J. Comput. Anal. Appl., 4(2), pp. 91-127.
[42] LA. Medeiros, J. Limaco and S.B. Menezes (2002), "Vibrations of elastic strings: Mathematical aspects, Part two", J. Comput. Anal. Appl., 4(3), pp. 211-263.
[43] Juan Nieto (1987), "Hukuhara-Kneser Property for a Nonlinear Dirichlet Problem", J. Math. Anal. Appl., 128, pp. 57-63.
[44] L. Nirenberg (1974),Topics in Nonlinear Functional Analysis, New York. [45] S. K. Ntouyas (1995), "Boundary value problems for neutral functional differential equations", Boundary Value Problems for Functional Differ- ential Equations, pp. 239 - 249.
[46] Donal O’Regan (1994), Theory of singular boundary problems, World Scientific Publishing, USA.
[47] E.L. Ortiz and A.P.N. Dinh (1987), "Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the Tau method", SIAM J. Math. Anal., 18, pp. 452-464.
[48] S. Park (1994), "Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps", J. Korean Math. Soc., 31(3), pp. 493-519.
[49] S. Park and B. G. Kang (1998), " Generalized variational inequalities and fixed point theorems", Nonlinear Anal. Theory, Methods and Appli- cations, 31, pp. 207-216.
[50] S. Park (2000), " On generalizations of the Ekeland-type variational principles", Nonlinear Anal., 39, pp. 881-889.
[51] S. Park and D. H. Tan (2000), " Remarks on the Schauder - Tychonoff fixed point theorem ", Vietnam J. Math., 28 (2), pp. 127-132.
[52] S. Park and D. H. Tan (2000), " Remarks on Himmelberg-Idzik’s fixed point theorem ", Acta Math. Vietnam., 25 (3), pp. 285-289.
[53] S. Park (2006), " Generalizations of the Krasnoselskii fixed point theo- rem", Nonlinear Anal., doi:10.1016/j.na.2006.10.024.
[54] S. Park (2007), " Fixed point theorems for better admissible multimaps on almost convex sets", J. Math. Anal. Appl., 329, pp. 690-702.
[55] P.K. Pavlakos and I. G. Stratis (1994), " Periodic solutions to retarded partial functional differential equations", Portugaliae Math. , 51, Fasc.-2, pp. 271-281.
[56] R.E. Showalter (1994),Hilbert space methods for partial differential equa- tions, Electronic J. Diff. Equat., Monograph 01.
[57] Yong-Ping Sun (2004), "Nontrivial solution for a three-point boundary value problem", Electronic J. Diff. Equat., 111, pp. 1-10.
[58] Paul. C. Talaga (1981), "The Hukuhara-Kneser Property for Parabolic System with Nonlinear boundary Conditions", J. Math. Anal. Appl., 79, pp. 461-488.
[59] Paul. C. Talaga (1988), "The Hukuhara-Kneser Property for Quasilinear Parabolic Equations", Nonlinear Anal., 12, 3, pp. 231-245.
[60] K. Yosida (1965),Functional Analysis, Springer-Verlag, New York Berlin G¨ottingen Heidelberg.
[61] E. Zeidler (1986), Nonlinear Functional Analysis and its Applications, Part I, Springer-Verlag, New York Berlin Heidelberg Tokyo.
[62] Bo Zhang (1995), "Boundary value problems of second order functional differential equations", Boundary Value Problems for Functional Differ- ential Equations, pp. 301- 306.
TRƯỜNG ĐẠI HỌC SƯ PHẠM THAØNH PHỐ HỒ CHÍ MINH ---
LÊ THỊ PHƯƠNG NGỌC