TAI LIEU THAM KHAO

Một phần của tài liệu Khóa luận tốt nghiệp Hóa học: Tổng hợp và khảo sát khả năng xúc tác phản ứng khử 4-nitrophenol của vật liệu khung hữu cơ-kim loại lanthanum (Trang 77 - 82)

S. M. Abdelbasir and A. E. Shalan, “An overview of nanomaterials for industrial wastewater treatment,” Korean Journal of Chemical Engineering, vol. 36, no. 8, pp.

1209-1225, Aug. 2019.

L. Liu, “Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts:

A review,” Journal of Water Process Engineering, vol. 42, p. 102122, Aug. 2021.

Y. R. Mejia and N. K. Reddy Bogireddy, “Reduction of 4-nitrophenol using green-

fabricated metal nanoparticles,” RSC Adv, vol. 12, no. 29, pp. 18661-18675, 2022.

A. Serra, R. Artal, M. Pozo, J. Garcia-Amorós, and E. Gémez, “Simple environmentally-friendly reduction of 4-nitrophenol,” Catalysts, vol. 10, no. 4, p.

458, Apr. 2020.

H. Bui Thi Thanh, “Reduction of 4-nitrophenol to 4-aminophenol using PƯHKUST- 1 catalyst,” Vietnam Journal of Catalysis and Adsorption, vol. 11, no. 1, pp. 110- 116, Oct. 2021.

Md. A. Ahsan, “Carbonization of Co-BDC MOF results in magnetic C@Co

nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in

water,” J Mol Lig, vol. 290, p. 111059, Sep. 2019.

Y. Zhang, “Recent progress in lanthanide metal-organic frameworks and their derivatives in catalytic applications,” Jnorg Chem Front, vol. 8, no. 3, pp. 590-619, 2021.

F. Yuan, “Syntheses of a series of lanthanide metal-organic frameworks for efficient UV-light-driven dye degradation: experiment and simulation,” CrystEngComm, vol.

23, no. 12, pp. 2404-2413, 2021.

Y. B. N. Tran and P. T. K. Nguyen, “Lanthanide metal-organic frameworks for

catalytic oxidation of olefins,” New Journal of Chemistry, vol. 45, no. 4, pp. 2090-

2102, 2021.

H. T. D. Nguyen, Y. B. N. Tran, H. N. Nguyen, T. C. Nguyen, F. Gandara, and P. T.

K. Nguyen, “A series of metal-organic frameworks for selective CO: capture and catalytic oxidative carboxylation of olefins,” Jnorg Chem, vol. 57, no. 21, pp. 13772-

13782, Nov. 2018.

G. H. Dang, “A cerium-containing metal-organic framework: synthesis and

heterogeneous catalytic activity toward Fenton-like reactions,” Chempluschem, vol.

84, no. 8, pp. 1046-1051, Aug. 2019.

66

[12]

[HÌ

[14]

[15]

[16]

[L7]

[18]

[19]

[20]

[21]

R. F. D’Vries, M. Iglesias, N. Snejko, S. Alvarez-Garcia, E. Gutiérrez-Puebla, and M. A. Monge, “Mixed lanthanide succinate-sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials,” J. Mater. Chem., vol. 22, no, 3, pp. 1191-1198, 2012.

K. Zhang, “Magnetically recyclable nanocomposites via lanthanide-based MOFs grown on natural sea sponge: Screening hydrogenation of nitrophenol to aminophenol,” Molecular Catalysis, vol. 528, p. 112459, Aug. 2022.

G. Ravi, M. Sarasija, D. Ayodhya, L. S. Kumari, and D. Ashok, “Facile synthesis, characterization and enhanced catalytic reduction of 4-nitrophenol using NaBH, by

undoped and Sm**, Gd**, Hf** doped LaaO: nanoparticles,” Nano Converg, vol. 6,

no. 1, p. 12, Dec. 2019.

D. Yu, R. Du, J.-C. Xiao, S. Xu, C. Rong, and S. Liu, “Theoretical study of pX, values for trivalent rare-earth metal cations in aqueous solution,” J Phys Chem A, vol. 122, no. 2, pp. 700-707, Jan. 2018.

Li H., Eddaoudi M., O'Keeffe M., Yaghi O. M., “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature, vol. 7, no.

5, pp. 276-402, Apr. 1999,

Wang H., Zhu Q.-L., Zou R., Xu, Q., “Metal-Organic Frameworks for Energy

Applications,” Chem, vol. 290, p. 111059, 52-80, Sep. 2017.

Tùng N. T., Nam P. T. S., “Vật liệu khung co kim (MOFs): các ứng dụng từ hap phụ khí đến xúc tac,” Vietnam Journal of Science and Technology, vol 50. no. 6, pp. 751-

751, 2012.

Y. Han, J. R. Li, Y. Xie, and G. Guo, “Substitution reactions in metal-organic frameworks and metal-organic polyhedra,” Chem Soc Rey, vol. 43, no. 16, pp. 5952—

5981, Jul. 2014, doi: 10.1039/C4CS00033A.

A. D. G. Firmino, “Robust Multifunctional Yttrium-Based Metal-Organic Frameworks with Breathing Effect,” Jnorg Chem, vol. 56, no. 3, pp. 1193-1208, Feb.

2017, doi: 10.102 1/acs.inorgchem.6b02199.

F. Saraci, V. Quezada-Novoa, P. R. Donnarumma, and A. J. Howarth, “Rare-earth metal-organic frameworks: From structure to applications,” Chemical Society

Reviews, vol. 49, no. 22. Royal Society of Chemistry, pp. 7949-7977, Nov. 21, 2020.

doi: 10.1039/d0cs00292c.

67

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Chidambaram and K. C. Stylianou, “Electronic metal-organic framework sensors,” Jnorganic Chemistry Frontiers, vol. 5, no. 5. Royal Socicty of Chemistry, pp. 979-998, May 01, 2018. doi: 10.1039/c7qi008 I5e.

S. Wan, “An Imide-Decorated Indium-Organic Framework for Efficient and

Selective Capture of Carcinogenic Dyes with Diverse Adsorption Interactions,” Cryst

Growth Des, vol. 20, no. 5, pp. 3199-3207, May 2020, doi: 10.102 1/acs.cgd.0c00066,

T. K. Prasad, D. H. Hong, and M. P. Suh, “High gas sorption and metal-ion exchange

of microporous metal-organic frameworks with incorporated imide groups,”

Chemistry - A European Journal, vol. 16, no. 47, pp. 14043-14050, Dec. 2010, doi:

10.1002/chem.201002135.

Y. Zhou and L. Han, “Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications,” Coord Chem Rev, vol. 430, p. 213665, Mar. 2021.

H. N. Abdelhamid, “High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks,” J Environ Chem Eng, vol. 9, no. 1, p. 104404, Feb. 2021.

S. Wan, “An imide-decorated indium-organic framework for efficient and selective capture of carcinogenic dyes with diverse adsorption interactions,” Cryst Growth Des, vol. 20, no. 5, pp. 3199-3207, May 2020.

F. G. Chavez, H. Najera, M. A. Leyva, O. Solorza-Feria, F. Gonzalez, and H. I.

Beltran, “New 2D Lanthanide MOFs Constructed from Bis(imide) Pyromellitic Alanine Ligands with Enhanced Fluorescence toward Activation and Modulation of

Microstructure,” Cryst Growth Des, vol. 20, no. 7, pp. 4273-4292, Jul. 2020, doi:

10.102 1/ACS.CGD.9B01542.

S. Su, R. Zhang, J. Rao, J. Yu, X. Jiang, S. Wang, and X. Yang, “Fabrication of

lanthanum-modified MOF-808 for phosphate and arsenic(V) removal from wastewater,” J Environ Chem Eng, vol. 10, no. 5, p. 108527, Oct. 2022, doi:

10,1016/3. JECE.2022.108527.

B. Xu, H. Guo, S. Wang, Y. Li, H. Zhang, and C. Liu, “Solvothermal synthesis of luminescent Eu(BTC)(H2O)DMF hierarchical architectures,” CrystEngComm, vol.

14, no. 8, pp. 2914-2919, Mar. 2012, doi: 10.1039/C2CE065721.

X. Lian and B. Yan, “A lanthanide metal-organic framework (MOF-76) for adsorbing dyes and fluorescence detecting aromatic pollutants,” RSC Ady, vol. 6, no.

14, pp. 11570-11576, Jan. 2016, doi: 10.1039/CSRA23681A.

68

[32]

[33]

[34]

[35]

[36]

7]

[38)

[39]

[40]

S. Wan, L. Li, J. Liu, B. Liu, G. Li, L. Zhang, and Y. Liu, “An Imide-Decorated Indium-Organic Framework for Efficient and Selective Capture of Carcinogenic Dyes with Diverse Adsorption Interactions,” Cryst Growth Des, vol. 20, no. 5, pp.

3199-3207, May 2020, doi: 10,1021/ACS.CGD.0C00066.

H. T. D. Nguyen, Y. B. N. Tran, H. N. Nguyen, T. C. Nguyen, F. Gandara, and P. T.

K. Nguyen, “A Series of Metal-Organic Frameworks for Selective CO2 Capture and Catalytic Oxidative Carboxylation of Olefins,” /norg Chem, vol. 57, no. 21, pp.

13772-13782, Nov. 2018, doi: 10.1021/ACS.INORGCHEM.8B02293.

S. Samsami, M. Mohamadi, M. H. Sarrafzadch, E. R. Rene, and M. Firoozbahr,

“Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives,” Process Safety and Environmental

Protection, vol. 143, pp. 138-163, Nov. 2020, doi: 10.1016/J.PSEP.2020.05.034.

V. Selvaraj, T. Swarna Karthika, C. Mansiya, and M. Alagar, “An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications,” J Mol Struct, vol. 1224, p.

129195, lan. 2021, doi: 10.1016/J.MOLSTRUC.2020.129195.

B. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, and G. Vasapollo, “Degradation of 4- nitrophenol (4-NP) using Fe-TIO2 as a heterogencous photo-Fenton catalyst,” J Hazard Mater, vol. 176, no. 1-3, pp. 569-574, Apr. 2010, doi:

10.1016/S JHAZMAT.2009. 11.066.

U. Chakraborty, G. Bhanjana, Kannu, N. Kaur, R. Sharma, G. Kaur, A. Kaushik, and

G. R. Chaudhary, “Microwave-assisted assembly of Ag2O-ZnO composite

nanocones for electrochemical detection of 4-Nitrophenol and assessment of their

photocatalytic activity towards degradation of 4-Nitrophenol and Methylene blue

dye,” J Hazard Mater, vol. 416, p. 125771, Aug. 2021, doi:

10.1016/J JHAZMAT.2021.125771.

T. de Oliveira Guidolin, “Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles,” J Clean Prod, vol. 318, p. 128556, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.128556.

1. Khan, “Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation,” Water (Switzerland), vol. 14, no. 2. MDPI, Jan. 01, 2022. doi:

10.3390/w 14020242.

D. Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng, and R. Mbaya,

“Activated carbon derived from waste orange and lemon peels for the adsorption of

69

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

methyl orange and methylene blue dyes from wastewater,” Heliyon, vol. 8, no. 8, Aug. 2022, doi: 10.1016/1.heliyon.2022.e09930,

M. Teimouri, “Gold nanoparticles fabrication by plant extracts: synthesis,

characterization, degradation of 4-nitrophenol from industrial wastewater, and

insecticidal activity — A review,” J Clean Prod, vol. 184, pp. 740-753, May 2018.

J. Zhu, “Preparation of PANPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol,” Colloids Surf A Physicochem Eng Asp, Vol. 611, p. 125889, Feb. 2021.

M. A. Zakaria, A. A. Menazea, A. M. Mostafa, and E. A. Al-Ashkar, “Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: Synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol,” Surfaces

and Interfaces, vol. 19, p. 100438, Jun. 2020.

N. Wang, F. Wang, F. Pan, S. Yu, and D. Pan, “Highly efficient silver catalyst supported by a spherical covalent organic framework for the continuous reduction of 4-nitrophenol,” ACS App! Mater Interfaces, vol. 13, no. 2, pp. 3209-3220, lan. 2021, T. K. Prasad, D. H. Hong, and M. P. Suh, “High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups,”

Chemistry - A European Journal, vol. 16, no. 47, pp. 14043-14050, Dec. 2010.

Y. Liu, “Series of stable anionic lanthanide metal-organic frameworks as a platform for pollutant separation and efficient nanoparticle catalysis,” Inorg Chem, vol. 61, no.

8, pp. 3472-3483, Feb. 2022.

J, Liu, H. Yu, and L. Wang, “Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal-organic framework nanosheets,” App! Catal A Gen, vol. 599, p. 117605, lun. 2020.

C. Duan, C. Liu, X. Meng, W. Lu, and Y. Ni, “Fabrication of carboxymethylated cellulose fibers supporting Ag NPs(@MOF-199s nanocatalysts for catalytic reduction of 4-nitrophenol,” App! Organomet Chem, vol. 33, no. 5, p. c4865, May 2019.

Z. Liu, L. Ning, K. Wang, L. Feng, W. Gu, and X. Liu, “A new cobalt metal-organic framework as a substrate for Pd nanoparticles applied in high-efliciency nitro phenol degradation and cinnamaldehyde hydrogenation,” Dalton Transactions, vol. 49, no.

4, pp. 1191-1199, 2020.

Md. A. Ahsan, “Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water,” Catal Commun, vol. 130, p.

105753, Oct. 2019.

70

Một phần của tài liệu Khóa luận tốt nghiệp Hóa học: Tổng hợp và khảo sát khả năng xúc tác phản ứng khử 4-nitrophenol của vật liệu khung hữu cơ-kim loại lanthanum (Trang 77 - 82)

Tải bản đầy đủ (PDF)

(82 trang)