Elucidating the structure-activity relationship of exactin

Một phần của tài liệu O NEUROTOXINS NOVEL ANTAGONISTS OF NICOTINIC ACETYLCHOLINE RECEPTORS FROM SNAKE VENOM (Trang 170 - 202)

Here, we report the nAChR subtype-selectivity of exactin and provide evidence for the involvement of loop–I and loop–III in the subtype-selectivity and binding parameters of Ω-neurotoxins. Therefore, delineation of functional determinants that are critical for these charcteristics of Ω-neurotoxins, would be interesting. This can be achieved by site-directed mutational analysis of exactin, This would also help us understand the structure-activity relationship of exactin’s dual function.

144

These studies may provide a fundamental basis for the design of highly selective ligands for nAChR subtypes. In the long run, these findings may facilitate in designing a chimera of α-neurotoxin (with high nAChR affinity) and Ω-neurotoxin (with determinants conferring subtype selectivity). Such a ligand chimera would address many questions associated with the normal physiology of nAChR subtypes and also could be used as therapeutic lead for various nAChR associated diseases.

145

Appendix

146

Figure A.1 Vector map and the MCS of pET-22b. (A) Vector diagram of pET- 32a with all the essential features of the vector. (B) The region corresponding to the multiple cloning site (MCS).

147

148

Table A.3 RP-HPLC chromatograms of the prification of refolded, 12 Oh9-1 alanine mutants and their ESI mass spectrum. They are labled and arranged in side by side fashion for a comparitive view from A to X in the order of loop-I, loop-II and loop-III mutants.

149

150

151

152

153

154

155

156

157

158

159

160

Bibliography

161

Albrand, J.P., Blackledge, M.J., Pascaud, F., Hollecker, M., and Marion, D.

(1995). NMR and restrained molecular dynamics study of the three- dimensional solution structure of toxin FS2, a specific blocker of the L-type calcium channel, isolated from black mamba venom. Biochemistry 34, 5923- 5937.

Albuquerque, E.X., Barnard, E.A., Porter, C.W., and Warnick, J.E. (1974).

The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates. Proceedings of the National Academy of Sciences of the United States of America 71, 2818-2822.

Albuquerque, E.X., Pereira, E.F., Alkondon, M., and Rogers, S.W. (2009).

Mammalian nicotinic acetylcholine receptors: from structure to function.

Physiological reviews 89, 73-120.

Albuquerque, E.X., Pereira, E.F., Alkondon, M., Schrattenholz, A., and Maelicke, A. (1997). Nicotinic acetylcholine receptors on hippocampal neurons: distribution on the neuronal surface and modulation of receptor activity. Journal of receptor and signal transduction research 17, 243-266.

Alkondon, M., and Albuquerque, E.X. (2005). Nicotinic receptor subtypes in rat hippocampal slices are differentially sensitive to desensitization and early in vivo functional up-regulation by nicotine and to block by bupropion. The Journal of pharmacology and experimental therapeutics 313, 740-750.

Anderson, A.J., Harvey, A.L., and Mbugua, P.M. (1985). Effects of fasciculin 2, an anticholinesterase polypeptide from green mamba venom, on neuromuscular transmission in mouse diaphragm preparations. Neuroscience letters 54, 123-128.

Antil-Delbeke, S., Gaillard, C., Tamiya, T., Corringer, P.J., Changeux, J.P., Servent, D., and Menez, A. (2000). Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor. The Journal of biological chemistry 275, 29594-29601.

Antil, S., Servent, D., and Menez, A. (1999). Variability among the sites by which curaremimetic toxins bind to torpedo acetylcholine receptor, as revealed by identification of the functional residues of alpha-cobratoxin. The Journal of biological chemistry 274, 34851-34858.

Arias, H.R. (1997). Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain research Brain research reviews 25, 133-191.

Arunlakshana, O., and Schild, H.O. (1959). Some quantitative uses of drug antagonists. British journal of pharmacology and chemotherapy 14, 48-58.

Banerjee, Y., Mizuguchi, J., Iwanaga, S., and Kini, R.M. (2005a). Hemextin AB complex--a snake venom anticoagulant protein complex that inhibits

162

factor VIIa activity. Pathophysiology of haemostasis and thrombosis 34, 184- 187.

Banerjee, Y., Mizuguchi, J., Iwanaga, S., and Kini, R.M. (2005b). Hemextin AB complex, a unique anticoagulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. The Journal of biological chemistry 280, 42601-42611.

Barber, C.M., Isbister, G.K., and Hodgson, W.C. (2013). Alpha neurotoxins.

Toxicon : official journal of the International Society on Toxinology 66, 47- 58.

Barchan, D., Kachalsky, S., Neumann, D., Vogel, Z., Ovadia, M., Kochva, E., and Fuchs, S. (1992). How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America 89, 7717-7721.

Barnard, E.A., Coates, V., Dolly, J.O., and Mallick, B. (1977). Binding of alpha-bungarotoxin and cholinergic ligands to acetylcholine receptors in the membrane of skeletal muscle. Cell biology international reports 1, 99-106.

Barnett, D. (1979). Pre‐ and post synaptic neurotoxins in the venom of the common brown snake (Pseudonaja t.textilis). Proc Aust Physiol Pharmacol Soc 10, 240.

Bilwes, A., Rees, B., Moras, D., Menez, R., and Menez, A. (1994). X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom.

Crystal packing reveals a model for insertion into membranes. Journal of molecular biology 239, 122-136.

Blanchet, G., Collet, G., Mourier, G., Gilles, N., Fruchart-Gaillard, C., Marcon, E., and Servent, D. (2014). Polypharmacology profiles and phylogenetic analysis of three-finger toxins from mamba venom: case of aminergic toxins. Biochimie 103, 109-117.

Bon, C., and Saliou, B. (1983). Ceruleotoxin: identification in the venom of Bungarus fasciatus, molecular properties and importance of phospholipase A2 activity for neurotoxicity. Toxicon : official journal of the International Society on Toxinology 21, 681-698.

Bourne, Y., Talley, T.T., Hansen, S.B., Taylor, P., and Marchot, P. (2005).

Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors. The EMBO journal 24, 1512-1522.

Celie, P.H., van Rossum-Fikkert, S.E., van Dijk, W.J., Brejc, K., Smit, A.B., and Sixma, T.K. (2004). Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907-914.

163

Chang, L.S., Liou, J.C., Lin, S.R., and Huang, H.B. (2002). Purification and characterization of a neurotoxin from the venom of Ophiophagus hannah (king cobra). Biochemical and biophysical research communications 294, 574-578.

Changeux, J.P. (2010). Allosteric receptors: from electric organ to cognition.

Annual review of pharmacology and toxicology 50, 1-38.

Chiappinelli, V.A., Weaver, W.R., McLane, K.E., Conti-Fine, B.M., Fiordalisi, J.J., and Grant, G.A. (1996). Binding of native kappa-neurotoxins and site-directed mutants to nicotinic acetylcholine receptors. Toxicon : official journal of the International Society on Toxinology 34, 1243-1256.

Clarke, P.B., and Reuben, M. (1996). Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. British journal of pharmacology 117, 595-606.

Conti-Fine, B.M., Navaneetham, D., Lei, S., and Maus, A.D. (2000). Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity?

European journal of pharmacology 393, 279-294.

Curti, B., Massey, V., and Zmudka, M. (1968). Inactivation of snake venom L- amino acid oxidase by freezing. The Journal of biological chemistry 243, 2306-2314.

Dani, J.A., and Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual review of pharmacology and toxicology 47, 699-729.

de Weille, J.R., Schweitz, H., Maes, P., Tartar, A., and Lazdunski, M. (1991).

Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proceedings of the National Academy of Sciences of the United States of America 88, 2437-2440.

Dellisanti, C.D., Yao, Y., Stroud, J.C., Wang, Z.Z., and Chen, L. (2007).

Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha- bungarotoxin at 1.94 A resolution. Nature neuroscience 10, 953-962.

Dineley, K.T., Bell, K.A., Bui, D., and Sweatt, J.D. (2002). beta -Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. The Journal of biological chemistry 277, 25056-25061.

Diochot, S., Baron, A., Salinas, M., Douguet, D., Scarzello, S., Dabert-Gay, A.S., Debayle, D., Friend, V., Alloui, A., Lazdunski, M., et al. (2012). Black mamba venom peptides target acid-sensing ion channels to abolish pain.

Nature 490, 552-555.

Dolly, J.O., and Barnard, E.A. (1984). Nicotinic acetylcholine receptors: an overview. Biochemical pharmacology 33, 841-858.

164

Ducancel, F., Merienne, K., Fromen-Romano, C., Tremeau, O., Pillet, L., Drevet, P., Zinn-Justin, S., Boulain, J.C., and Menez, A. (1996). Mimicry between receptors and antibodies. Identification of snake toxin determinants recognized by the acetylcholine receptor and an acetylcholine receptor- mimicking monoclonal antibody. The Journal of biological chemistry 271, 31345-31353.

Dudai, Y., Herzberg, M., and Silman, I. (1973). Molecular structures of acetylcholinesterase from electric organ tissue of the electric eel. Proceedings of the National Academy of Sciences of the United States of America 70, 2473-2476.

Dufton, M.J., and Hider, R.C. (1988). Structure and pharmacology of elapid cytotoxins. Pharmacology & therapeutics 36, 1-40.

Dutertre, S., and Lewis, R.J. (2010). Use of venom peptides to probe ion channel structure and function. The Journal of biological chemistry 285, 13315-13320.

Edelstein, S.J., and Le Novère, N. (2013). Cooperativity of Allosteric Receptors. Journal of molecular biology 425, 1424-1432.

Eglen, R.M. (2005). Muscarinic receptor subtype pharmacology and physiology. Progress in medicinal chemistry 43, 105-136.

Endo, H., Suzuki, M., Sode, K., Tamiya, E., and Karube, I. (1991). Rapid determination of plasmid-carrying yeast cells by using an imaging sensor system. Biotechnology and bioengineering 38, 1331-1336.

Engel, A.G. (1994). Congenital myasthenic syndromes. Neurologic clinics 12, 401-437.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368-376.

Ferreira, S.H., Bartelt, D.C., and Greene, L.J. (1970a). Isolation of bradykinin- potentiating peptides from Bothrops jararaca venom. Biochemistry 9, 2583- 2593.

Ferreira, S.H., Greene, L.H., Alabaster, V.A., Bakhle, Y.S., and Vane, J.R.

(1970b). Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme. Nature 225, 379-380.

Fertuck, H.C., and Salpeter, M.M. (1974). Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proceedings of the National Academy of Sciences of the United States of America 71, 1376-1378.

Fruchart-Gaillard, C., Gilquin, B., Antil-Delbeke, S., Le Novere, N., Tamiya, T., Corringer, P.J., Changeux, J.P., Menez, A., and Servent, D. (2002).

Experimentally based model of a complex between a snake toxin and the alpha

165

7 nicotinic receptor. Proceedings of the National Academy of Sciences of the United States of America 99, 3216-3221.

Fry, B.G., Casewell, N.R., Wuster, W., Vidal, N., Young, B., and Jackson, T.N. (2012). The structural and functional diversification of the Toxicofera reptile venom system. Toxicon : official journal of the International Society on Toxinology 60, 434-448.

Fry, B.G., Lumsden, N.G., Wuster, W., Wickramaratna, J.C., Hodgson, W.C., and Kini, R.M. (2003a). Isolation of a neurotoxin (alpha-colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes. Journal of molecular evolution 57, 446-452.

Fry, B.G., Roelants, K., Champagne, D.E., Scheib, H., Tyndall, J.D., King, G.F., Nevalainen, T.J., Norman, J.A., Lewis, R.J., Norton, R.S., et al. (2009).

The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annual review of genomics and human genetics 10, 483-511.

Fry, B.G., Wuster, W., Kini, R.M., Brusic, V., Khan, A., Venkataraman, D., and Rooney, A.P. (2003b). Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 57, 110-129.

Gahring, L.C., and Rogers, S.W. (2005). Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. The AAPS journal 7, E885-894.

Gasanov, S.E., Dagda, R.K., and Rael, E.D. (2014). Snake Venom Cytotoxins, Phospholipase As, and Zn-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. Journal of clinical toxicology 4, 1000181.

Gotti, C., and Clementi, F. (2004). Neuronal nicotinic receptors: from structure to pathology. Progress in neurobiology 74, 363-396.

Grant, G.A., and Chiappinelli, V.A. (1985). kappa-Bungarotoxin: complete amino acid sequence of a neuronal nicotinic receptor probe. Biochemistry 24, 1532-1537.

Grant, G.A., Luetje, C.W., Summers, R., and Xu, X.L. (1998). Differential roles for disulfide bonds in the structural integrity and biological activity of kappa-Bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist.

Biochemistry 37, 12166-12171.

Hansen, S.B., Sulzenbacher, G., Huxford, T., Marchot, P., Taylor, P., and Bourne, Y. (2005). Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. The EMBO journal 24, 3635-3646.

Hansen, S.B., and Taylor, P. (2007). Galanthamine and Non-competitive Inhibitor Binding to ACh-binding Protein: Evidence for a Binding Site on

166

Non-α-subunit Interfaces of Heteromeric Neuronal Nicotinic Receptors.

Journal of molecular biology 369, 895-901.

Harrison, R.A., Cook, D.A., Renjifo, C., Casewell, N.R., Currier, R.B., and Wagstaff, S.C. (2011). Research strategies to improve snakebite treatment:

challenges and progress. Journal of proteomics 74, 1768-1780.

Harvey, A.L. (2014). Toxins and drug discovery. Toxicon : official journal of the International Society on Toxinology 92, 193-200.

He, Y.Y., Lee, W.H., and Zhang, Y. (2004). Cloning and purification of alpha- neurotoxins from king cobra (Ophiophagus hannah). Toxicon : official journal of the International Society on Toxinology 44, 295-303.

Hibbs, R.E., Talley, T.T., and Taylor, P. (2004). Acrylodan-conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine-binding protein. The Journal of biological chemistry 279, 28483-28491.

Hodgson, W.C., and Wickramaratna, J.C. (2002). In vitro neuromuscular activity of snake venoms. Clinical and experimental pharmacology &

physiology 29, 807-814.

Hogg, R.C., Raggenbass, M., and Bertrand, D. (2003). Nicotinic acetylcholine receptors: from structure to brain function. Reviews of physiology, biochemistry and pharmacology 147, 1-46.

Huang, S., Li, S.X., Bren, N., Cheng, K., Gomoto, R., Chen, L., and Sine, S.M. (2013). Complex between alpha-bungarotoxin and an alpha7 nicotinic receptor ligand-binding domain chimaera. The Biochemical journal 454, 303- 310.

Jiang, M., Haggblad, J., and Heilbronn, E. (1987). Isolation and pharmacological characterization of a new alpha-neurotoxin (alpha-AgTx) from venom of the viper Agkistrodon halys (Pallas). Toxicon : official journal of the International Society on Toxinology 25, 1019-1022.

Joubert, F.J., and Taljaard, N. (1980). The complete primary structure of toxin CM-1b from Hemachatus haemachatus (Ringhals) snake venom. Toxicon : official journal of the International Society on Toxinology 18, 191-198.

Kabbani, N., Nordman, J.C., Corgiat, B.A., Veltri, D.P., Shehu, A., Seymour, V.A., and Adams, D.J. (2013). Are nicotinic acetylcholine receptors coupled to G proteins? BioEssays : news and reviews in molecular, cellular and developmental biology 35, 1025-1034.

Karlin, A., Cox, R.N., Dipaola, M., Holtzman, E., Kao, P.N., Lobel, P., Wang, L., and Yodh, N. (1986). Functional domains of the nicotinic acetylcholine receptor. Annals of the New York Academy of Sciences 463, 53-69.

167

Kasheverov, I.E., Zhmak, M.N., Fish, A., Rucktooa, P., Khruschov, A.Y., Osipov, A.V., Ziganshin, R.H., D'Hoedt, D., Bertrand, D., Sixma, T.K., et al.

(2009). Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor. Journal of neurochemistry 111, 934-944.

Kawashima, K., and Fujii, T. (2003). The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life sciences 74, 675- 696.

Kawashima, K., and Fujii, T. (2008). Basic and clinical aspects of non- neuronal acetylcholine: overview of non-neuronal cholinergic systems and their biological significance. Journal of pharmacological sciences 106, 167- 173.

King, G.F. (2011). Venoms as a platform for human drugs: translating toxins into therapeutics. Expert opinion on biological therapy 11, 1469-1484.

Kini, R.M. (2002). Molecular moulds with multiple missions: functional sites in three-finger toxins. Clinical and experimental pharmacology & physiology 29, 815-822.

Kini, R.M., and Doley, R. (2010). Structure, function and evolution of three- finger toxins: mini proteins with multiple targets. Toxicon : official journal of the International Society on Toxinology 56, 855-867.

Kistler, J., and Stroud, R.M. (1981). Crystalline arrays of membrane-bound acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America 78, 3678-3682.

Kreienkamp, H.J., Sine, S.M., Maeda, R.K., and Taylor, P. (1994).

Glycosylation sites selectively interfere with alpha-toxin binding to the nicotinic acetylcholine receptor. The Journal of biological chemistry 269, 8108-8114.

Kurzen, H., Wessler, I., Kirkpatrick, C.J., Kawashima, K., and Grando, S.A.

(2007). The non-neuronal cholinergic system of human skin. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 39, 125-135.

Langley, J.N. (1905). On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. The Journal of physiology 33, 374-413.

Lebbe, E.K.M., Peigneur, S., Wijesekara, I., and Tytgat, J. (2014). Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview. Marine drugs 12, 2970-3004.

Lee, C.Y. (1979). Recent advances in chemistry and pharmacology of snake toxins. Advances in cytopharmacology 3, 1-16.

168

Levandoski, M.M., Lin, Y., Moise, L., McLaughlin, J.T., Cooper, E., and Hawrot, E. (1999). Chimeric analysis of a neuronal nicotinic acetylcholine receptor reveals amino acids conferring sensitivity to alpha-bungarotoxin. The Journal of biological chemistry 274, 26113-26119.

Li, J., Zhang, H., Liu, J., and Xu, K. (2006). Novel genes encoding six kinds of three-finger toxins in Ophiophagus hannah (king cobra) and function characterization of two recombinant long-chain neurotoxins. The Biochemical journal 398, 233-242.

Lin, Y.L., Lin, S.R., Wu, T.T., and Chang, L.S. (2004). Evidence showing an intermolecular interaction between KChIP proteins and Taiwan cobra cardiotoxins. Biochemical and biophysical research communications 319, 720- 724.

Lindstrom, J., Merlie, J., and Yogeeswaran, G. (1979). Biochemical properties of acteylcholine receptor subunits from Torpedo californica. Biochemistry 18, 4465-4470.

Loughnan, M.L., Nicke, A., Lawrence, N., and Lewis, R.J. (2009). Novel alpha D-conopeptides and their precursors identified by cDNA cloning define the D-conotoxin superfamily. Biochemistry 48, 3717-3729.

Love, R.A., and Stroud, R.M. (1986). The crystal structure of alpha- bungarotoxin at 2.5 A resolution: relation to solution structure and binding to acetylcholine receptor. Protein engineering 1, 37-46.

Low, B.W. (1976). Proceedings: Structure studies of a sea snake neurotoxin

"erabutoxin b". Journal of biochemistry 79, 27P.

Mansvelder, H.D., Fagen, Z.M., Chang, B., Mitchum, R., and McGehee, D.S.

(2007). Bupropion inhibits the cellular effects of nicotine in the ventral tegmental area. Biochemical pharmacology 74, 1283-1291.

Marini, C., and Guerrini, R. (2007). The role of the nicotinic acetylcholine receptors in sleep-related epilepsy. Biochemical pharmacology 74, 1308-1314.

Markland, F.S., Shieh, K., Zhou, Q., Golubkov, V., Sherwin, R.P., Richters, V., and Sposto, R. (2001). A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis 31, 183-191.

McCleary, R.J., and Kini, R.M. (2013). Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon : official journal of the International Society on Toxinology 62, 56-74.

McDowell, R.S., Dennis, M.S., Louie, A., Shuster, M., Mulkerrin, M.G., and Lazarus, R.A. (1992). Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins.

Biochemistry 31, 4766-4772.

169

Menez, A. (1998). Functional architectures of animal toxins: a clue to drug design? Toxicon : official journal of the International Society on Toxinology 36, 1557-1572.

Minea, R., Swenson, S., Costa, F., Chen, T.C., and Markland, F.S. (2005).

Development of a novel recombinant disintegrin, contortrostatin, as an effective anti-tumor and anti-angiogenic agent. Pathophysiology of haemostasis and thrombosis 34, 177-183.

Moise, L., Piserchio, A., Basus, V.J., and Hawrot, E. (2002). NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha- neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. The Journal of biological chemistry 277, 12406-12417.

Morita, T. (2004). C-type lectin-related proteins from snake venoms. Current drug targets Cardiovascular & haematological disorders 4, 357-373.

Nair, D.G., Fry, B.G., Alewood, P., Kumar, P.P., and Kini, R.M. (2007).

Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. The Biochemical journal 402, 93-104.

Namiranian, S., and Hider, R.C. (1992). Use of HPLC to demonstrate variation of venom toxin composition in the Thailand cobra venoms Naja naja kaouthia and Naja naja siamensis. Toxicon : official journal of the International Society on Toxinology 30, 47-61.

Neumann, D., Barchan, D., Fridkin, M., and Fuchs, S. (1986). Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit. Proceedings of the National Academy of Sciences of the United States of America 83, 9250-9253.

Nirthanan, S., Charpantier, E., Gopalakrishnakone, P., Gwee, M.C., Khoo, H.E., Cheah, L.S., Bertrand, D., and Kini, R.M. (2002). Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (alphabetagammadelta ) but a poorly reversible antagonist of neuronal alpha 7 nicotinic acetylcholine receptors. The Journal of biological chemistry 277, 17811-17820.

Nirthanan, S., Gopalakrishnakone, P., Gwee, M.C., Khoo, H.E., and Kini, R.M. (2003). Non-conventional toxins from Elapid venoms. Toxicon : official journal of the International Society on Toxinology 41, 397-407.

Nirthanan, S., and Gwee, M.C. (2004). Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. Journal of pharmacological sciences 94, 1-17.

Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S. (1982). Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793-797.

170

Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., et al. (1983).

Structural homology of Torpedo californica acetylcholine receptor subunits.

Nature 302, 528-532.

OmPraba, G., Chapeaurouge, A., Doley, R., Devi, K.R., Padmanaban, P., Venkatraman, C., Velmurugan, D., Lin, Q., and Kini, R.M. (2010).

Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. Journal of proteome research 9, 1882-1893.

Osipov, A.V., Kasheverov, I.E., Makarova, Y.V., Starkov, V.G., Vorontsova, O.V., Ziganshin, R., Andreeva, T.V., Serebryakova, M.V., Benoit, A., Hogg, R.C., et al. (2008). Naturally occurring disulfide-bound dimers of three- fingered toxins: a paradigm for biological activity diversification. The Journal of biological chemistry 283, 14571-14580.

Osipov, A.V., Rucktooa, P., Kasheverov, I.E., Filkin, S.Y., Starkov, V.G., Andreeva, T.V., Sixma, T.K., Bertrand, D., Utkin, Y.N., and Tsetlin, V.I.

(2012). Dimeric alpha-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. The Journal of biological chemistry 287, 6725-6734.

Oyama, E., and Takahashi, H. (2015). Purification and characterization of two platelet-aggregation inhibitors, named angustatin and H-toxin TA2, from the venom of Dendroaspis angusticeps. Toxicon : official journal of the International Society on Toxinology 93, 61-67.

Oz, M., Ravindran, A., Diaz-Ruiz, O., Zhang, L., and Morales, M. (2003). The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. The Journal of pharmacology and experimental therapeutics 306, 1003-1010.

Pahari, S., Mackessy, S.P., and Kini, R.M. (2007). The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC molecular biology 8, 115.

Patlak, M. (2004). From viper's venom to drug design: treating hypertension.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology 18, 421.

Patocka, J., Merka, V., Hrdina, V., and Hrdina, R. (2004). Endothelins and sarafotoxins: peptides of similar structure and different function. Acta medica (Hradec Kralove) / Universitas Carolina, Facultas Medica Hradec Kralove 47, 157-162.

Pawlak, J., Mackessy, S.P., Fry, B.G., Bhatia, M., Mourier, G., Fruchart- Gaillard, C., Servent, D., Menez, R., Stura, E., Menez, A., et al. (2006).

Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila

171

(Mangrove Catsnake) with bird-specific activity. The Journal of biological chemistry 281, 29030-29041.

Pawlak, J., Mackessy, S.P., Sixberry, N.M., Stura, E.A., Le Du, M.H., Menez, R., Foo, C.S., Menez, A., Nirthanan, S., and Kini, R.M. (2009). Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon- specific neurotoxicity. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23, 534-545.

Petrova, S.D., Atanasov, V.N., and Balashev, K. (2012). Vipoxin and its components: structure-function relationship. Advances in protein chemistry and structural biology 87, 117-153.

Pettit, D.L., Shao, Z., and Yakel, J.L. (2001). beta-Amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, Rc120.

Pillet, L., Tremeau, O., Ducancel, F., Drevet, P., Zinn-Justin, S., Pinkasfeld, S., Boulain, J.C., and Menez, A. (1993). Genetic engineering of snake toxins.

Role of invariant residues in the structural and functional properties of a curaremimetic toxin, as probed by site-directed mutagenesis. The Journal of biological chemistry 268, 909-916.

Poh, S.L., Mourier, G., Thai, R., Armugam, A., Molgo, J., Servent, D., Jeyaseelan, K., and Menez, A. (2002). A synthetic weak neurotoxin binds with low affinity to Torpedo and chicken alpha7 nicotinic acetylcholine receptors.

European journal of biochemistry / FEBS 269, 4247-4256.

Popot, J.L., and Changeux, J.P. (1984). Nicotinic receptor of acetylcholine:

structure of an oligomeric integral membrane protein. Physiological reviews 64, 1162-1239.

Prinz, H. (2010). Hill coefficients, dose–response curves and allosteric mechanisms. Journal of Chemical Biology 3, 37-44.

Prinz, H., and Maelicke, A. (1983). Interaction of cholinergic ligands with the purified acetylcholine receptor protein. I. Equilibrium binding studies. The Journal of biological chemistry 258, 10263-10271.

Pung, Y.F., Wong, P.T., Kumar, P.P., Hodgson, W.C., and Kini, R.M. (2005).

Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. The Journal of biological chemistry 280, 13137-13147.

Quik, M., Perez, X.A., and Bordia, T. (2012). Nicotine as a potential neuroprotective agent for Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 27, 947-957.

Rajagopalan, N., Pung, Y.F., Zhu, Y.Z., Wong, P.T., Kumar, P.P., and Kini, R.M. (2007). Beta-cardiotoxin: a new three-finger toxin from Ophiophagus

Một phần của tài liệu O NEUROTOXINS NOVEL ANTAGONISTS OF NICOTINIC ACETYLCHOLINE RECEPTORS FROM SNAKE VENOM (Trang 170 - 202)

Tải bản đầy đủ (PDF)

(202 trang)