vuông tại A
2.Hệ thức lượng trong tam giác vuông
1) AB2 = BH.BC; AC2 = CH.BC 2) AB.AC = AH.BC
3) AH2 = BH.HC 4)
Kết quả:
-Với tam giác đều cạnh là a, ta c:
3.Tỉ số lượng giác của góc nhọn
Đặt khi đó:
∆ABC ⇔AB2 +AC2 =BC2
B H C
A
2 2 2
1 1 1
AH = AB + AC
a 3 a2 3
h ; S
2 4
= =
ACB ; ABC
∠ = α ∠ = β
Kết quả suy ra:
4) Cho nhọn, BC = a; AC = b; AB = c khi đó:
2.CHỨNG MINH
BẰNG NHAU – SONG SONG, VUÔNG GÓC - ĐỒNG QUY, THẲNG HÀNG
A.KIẾN THỨC CƠ BẢN 1.Tam giác bằng nhau
a) Khái niệm:
b) Các trường hợp bằng nhau của hai tam giỏc: c.c.c; c.g.c; g.c.g.
AB AH AC HC AB AH AC HC
sin ; cos ; tg ; cot g
BC AC BC AC AC HC AB AH
α = = α = = α = = α = =
b a sin B acosC ctgB ccot gC c acosB asinC bctgB btgC
= = = =
= = = =
1) sinα =cos ;β cosα =sin ;β tgα =cotg ;β cot gα = βtg
sin cos
2) 0 sin 1; 0 cos <1; tg ; cot g
cos sin
α α
< α < < α α = α =
α α
2 2
2 2
1 1
3) sin cos 1; tg .cot g 1; 1 cot g ; 1 tg
sin cos
α + α = α α = = + α = + α
α α
∆ABC
2 2 2
ABC
a b c 2bc.cosA; S 1bcsin A
∆ 2
= + − =
A A '; B B'; C C'
ABC A'B'C' khi
AB A 'B'; BC B'C'; AC A'C'
∠ = ∠ ∠ = ∠ ∠ = ∠
∆ = ∆ = = =
41
c) Các trường hợp bằng nhau của hai tam giỏc vuụng: hai cạnh gúc vuụng; cạnh huyền và một cạnh gúc vuụng; cạnh huyền và một gúc nhọn.
d) Hệ quả: Hai tam giỏc bằng nhau thỡ cỏc đường cao; các đường phân giác; các đường trung tuyến tương ứng bằng nhau.
2.Chứng minh hai gúc bằng nhau
-Dựng hai tam giỏc bằng nhau hoặc hai tam giác đồng dạng, hai gúc của tam giỏc cân, đều; hai gúc của hỡnh thang cõn, hỡnh bỡnh hành, …
-Dựng quan hệ giữa cỏc gúc trung gian với cỏc gúc cần chứng minh.
-Dựng quan hệ cỏc gúc tạo bởi các đường thẳng song song, đối đỉnh.
-Dựng mối quan hệ của cỏc gúc với đường trũn.(Chứng minh 2 gúc nội tiếp cựng chắn một cung hoặc hai cung bằng nhau của một đường trũn, …)
3.Chứng minh hai đoạn thẳng bằng nhau -Dùng đoạn thẳng trung gian.
-Dựng hai tam giỏc bằng nhau.
-Ứng dụng tớnh chất đặc biệt của tam giác cân, tam giác đều, trung tuyến ứng với cạnh huyền của tam giỏc vuụng, hỡnh thang cõn, hỡnh chữ nhật, …
-Sử dụng cỏc yếu tố của đường trũn: hai dõy cung của hai cung bằng nhau, hai đường kớnh của một đường trũn, …
-Dựng tớnh chất đường trung bỡnh của tam giỏc, hỡnh thang, … 4.Chứng minh hai đường thẳng, hai đoạn thẳng song song
-Dựng mối quan hệ giữa cỏc gúc: So le bằng nhau, đồng vị bằng nhau, trong cựng phớa bự nhau, …
-Dựng mối quan hệ cựng song song, vuụng gúc với đường thẳng thứ ba.
-Áp dụng định lý đảo của định lý Talet.
-Áp dụng tớnh chất của cỏc tứ giác đặc biệt, đường trung bỡnh của tam giỏc.
-Dựng tớnh chất hai dõy chắn giữa hai cung bằng nhau của một đường trũn.
5.Chứng minh hai đường thẳng vuụng gúc
-Chứng minh chỳng song song với hai đường vuụng gúc khỏc.
-Dựng tớnh chất: đường thẳng vuụng gúc với một trong hai đường thẳng song song thỡ vuụng gúc với đường thẳng cũn lại.
-Dựng tớnh chất của đường cao và cạnh đối diện trong một tam giỏc.
-Đường kính đi qua trung điểm của dõy.
-Phõn giỏc của hai gúc kề bự nhau.
6.Chứng minh ba điểm thẳng hàng
-Dùng tiên đề Ơclit: Nếu AB//d; BC//d thỡ A, B, C thẳng hàng.
-Áp dụng tớnh chất các điểm đặc biệt trong tam giỏc: trọng tõm, trực tâm, tâm đường trũn ngoại tiếp, …
-Chứng minh 2 tia tạo bởi ba điểm tạo thành gúc bẹt: Nếu gúc ABC bằng 1800 thỡ A, B, C thẳng hàng.
-Áp dụng tớnh chất: Hai gúc bằng nhau cú hai cạnh nằm trờn một đường thẳng và hai cạnh kia nằm trờn hai nửa mặt phẳng với bờ là đường thẳng trờn.
-Chứng minh AC là đường kớnh của đường trũn tõm B.
7.Chứng minh các đường thẳng đồng quy
-Áp dụng tớnh chất các đường đồng quy trong tam giỏc.
-Chứng minh các đường thẳng cùng đi qua một điểm: Ta chỉ ra hai đường thẳng cắt nhau tại một điểm và chứng minh đường thẳng cũn lại đi qua điểm đó.
-Dùng định lý đảo của định lý Talet.
3.CHỨNG MINH HAI TAM GIÁC ĐỒNG DẠNG HỆ THỨC HÌNH HỌC
A.KIẾN THỨC CƠ BẢN 1.Tam giác đồng dạng
43
-Khái niệm:
-Các trường hợp đồng dạng của hai tam giỏc: c – c – c; c – g – c; g – g.
-Các trường hợp đồng dạng của hai tam giỏc vuông: góc nhọn; hai cạnh góc vuông; cạnh huyền - cạnh góc vuông…
*Tính chất: Hai tam giác đồng dạng thì tỉ số hai đường cao, hai đường phân giác, hai đường trung tuyến tương ứng, hai chu vi bằng tỉ số đồng dạng; tỉ số hai diện tich bằng bình phương tỉ số đồng dạng.
2.Phương pháp chứng minh hệ thức hình học
-Dùng định lớ Talet, tớnh chất đường phân giác, tam giác đồng dạng, cỏc hệ thức lượng trong tam giỏc vuụng, …
Giả sử cần chứng minh MA.MB = MC.MD
-Chứng minh hai tam giác MAC và MDB đồng dạng hoặc hai tam giỏc MAD và MCB.
-Trong trường hợp 5 điểm đó cùng nằm trờn một đường thẳng thỡ cần chứng minh cỏc tớch trờn cựng bằng tớch thứ ba.
Nếu cần chứng minh MT2 = MA.MB thỡ chứng minh hai tam giác MTA và MBT đồng dạng hoặc so sỏnh với tớch thứ ba.
Ngoài ra cần chú ý đến việc sử dụng cỏc hệ thức trong tam giác vuông; phương tích của một điểm với đường trũn.
4.CHỨNG MINH TỨ GIÁC NỘI TIẾP
A.KIẾN THỨC CƠ BẢN Phương pháp chứng minh
-Chứng minh bốn đỉnh của tứ giác cùng cách đều một điểm.
A A'; B B'; C C'
ABC A'B'C' khi AB AC BC
A'B' A 'C' B'C'
∠ = ∠ ∠ = ∠ ∠ = ∠
∆ : ∆ = =
-Chứng minh tứ giỏc cú hai góc đối diện bự nhau.
-Chứng minh hai đỉnh cựng nhỡn đoạn thẳng tạo bởi hai điểm cũn lại hai gúc bằng nhau.
-Chứng minh tổng của gúc ngoài tại một đỉnh với góc trong đối diện bự nhau.
-Nếu MA.MB = MC.MD hoặc NA.ND = NC.NB thỡ tứ giỏc ABCD nột tiếp. (Trong đó )
-Nếu PA.PC = PB.PD thỡ tứ giỏc ABCD nội tiếp. (Trong đó )
-Chứng minh tứ giác đó là hỡnh thang cõn; hỡnh chữ nhật; hỡnh vuụng; …
Nếu cần chứng minh cho nhiều điểm cựng thuộc một đường tròn ta có thể chứng minh lần lượt 4 điểm một lúc. Song cần chú ý tính chất “Qua 3 điểm không thẳng hàng xác định duy nhất một đường tròn”