Geochemical Significance and Place

Một phần của tài liệu Advances in agronomy volume 99 (Trang 281 - 294)

Fougerite is today recognized as a new iron oxide which occurs in waterlogged soils. Fougerite forms as easily as GRs, controls Fe in solution, and has particular properties quite different from the other iron oxides. In addition, Mg enters the mineral.

In soils, the following scheme has been proposed: at the end of dry season, the soil profile is completely oxidized and Fe present in oxides such as goethite or lepidocrocite. When reducing conditions appear, such as in autumn in temperate climate or during the wet season in tropical climate,

FeIII/Fetotal

1 2/3

Ferrihydrite

Goethite Hematite

Maghemite

Magnetite Lepidocrocite

1/3

1/4 1/2

O/O + OH

3/4 1

Fougerite

Fe2+

in solution

Figure 20 Pathways of formation of iron oxides, and role of fougerite and ferrihydrite as reaction intermediates.

280 Fabienne Trolard and Guilhem Bourrie´

with both a supply of organic matter and water saturation, Fe oxides are partly reduced and Fe2þis released in solution. When oxygen enters the soil due to fluctuations in the water table or supply by rain, Fe2þis oxidized and fougerite forms, by co-precipitation of Fe3þwith Fe2þand Mg2þ.

Bacterial activity is strongly suspected as responsible for the formation of this mineral as was observed in laboratory experimentation. Later, with alternate moderately reducing or strongly reducing conditions, thexmole ratio fluctuates, and fougerite is subject to mineralogical transformations, which can be monitored by in situ Mo¨ssbauer spectroscopy (Feder et al., 2005). Oxidation of fougerite at constant Mg mole ratio leads to an increase in the electrical charge of the layer. This can be simply compensated by a deprotonation of water molecules in the interlayer, or OH ions into O2 ions in the hydroxide sheets, or various anions depending on the environmental conditions.

Fougerite acts as a transient phase from Fe2þ of the soil solution to Fe oxides and oxyhydroxides andFig. 20summarizes from literature and our observations the pathways between Fe2þ and iron oxides implying GRs.

Fougerite is a well-crystallized mineral, with a definite structure, stable in its narrow conditions of stability. As it is labile, it transforms easily in other, more stable, iron oxides as soon as conditions become oxidizing. It acts as an intermediate toward oxidation of dissolved Fe2þ, and it also plays a role in the magnesium cycle, and interacts with many other biogeochemical cycles. More generally, fougerite, as other layered double hydroxides (Sparks, 2001), may play an essential role in the formation of clay minerals, both phyllosilicates and iron hydroxides and oxides, and in the control of both major elements (Mg, Fe) and trace metals (Co, Cr, Mn, Ni, and Zn) in the environment.

REFERENCES

Abdelmoula, M., Refait, P., Drissi, S. H., Mihe, J. P., and Ge´nin, J. M. R. (1996).

Conversion electron Mo¨ssbauer spectroscopy and X-ray diffraction studies of the forma- tion of carbonate-containing green rust one by corrosion of metallic iron in NaHCO3

and (NaHCO3þNaCl) solutions.Corros. Sci.38,623–663.

Al-Agha, M. R., Burley, S. D., Curtis, C. D., and Esson, J. (1995). Complex cementation textures and authigenic mineral assemblages in recent concentrations from Lincolnshire Wash (east coast, UK) driven by Fe(0) to Fe(II) oxidation. J. Geol. Soc. London152, 157–171.

Aurousseau, P., Bourrie´, G., and Curmi, P. (1987). Organisation, mine´ralogie et dynamique de l’aluminium dans les sols acides et podzoliques en climat tempe´re´ et oce´anique (Exemples du Massif Armoricain, France). In‘‘Podzols et Podzolisation’’ (D. Righi and A. Chauvel, coordinators), pp. 85–105. AFES-INRA (1986). Communication invite´e, Table Ronde Internationale du CNRS, Poitiers pp. 10–11, Paris.

Avery, B. W. (1973). Soil classification in the Soil Survey of England and Wales.J. Soil Sci.

24,324–338.

Geochemistry of Green Rusts and Fougerite 281

Badaut, D., Besson, G., Decarreau, A., and Rautureau, M. (1985). Occurrence of a ferrous, trioctahedral smectite in a recent sediments of Atlantis II deep, Red Sea.Clay Miner.20, 389–404.

Baize, D., and Girard, M.-C. (1995). ‘‘Re´fe´rentiel Pe´dologique—Les Principaux sols d’Europe.’’ Collection Techniques et Pratiques, INRA e´dition, Paris.

Bartlett, R. J., and James, B. R. (1995). System for categorizing soil redox status by chemical field testing.Geoderma68,211–218.

Bates, R. G., and Macaskill, J. B. (1978). Standard potential of the silver-silver chloride electrode.Pure Appl. Chem.50,1701–1706.

Bernal, J. O., Dasgupta, D. R., and Mackay, A. L. (1959). The oxides and hydroxides of iron and their structural interrelationships.Clay Miner. Bull.4,15–30.

Bigham, J. K., and Tuovinen, O. H. (1985). Mineralogical, morphological, and microbio- logical characteristics of tubercles in cast iron water mains as related to their chemical activity.In‘‘Planetary Ecology’’ (D. E. Caldwell, J. A. Brierley, and C. L. Brierley, Eds.), pp. 239–250. Van Nostrand-Rheinold, Amsterdam.

Borggaard, O. K. (1988). Phase identification by selective techniques. In‘‘Iron in Soils and Clay Minerals’’ ( J.W. Stuckiet al., Eds.),Sci. Ge´ol. Me´m. Strasb. Reidel, Dordrecht, Holland.85,pp. 83–98.

Bourrie´, G. (1981). Geochemistry of spring waters—Seasonal variations and aluminum control. In‘‘International Clay Conference 1981’’ (H. Van Olphen, and F. Veniale, Eds.), pp. 459–473. Developments in Sedimentology, 35, Elsevier, Amsterdam.

Bourrie´, G., Grimaldi, C., and Re´geard, A. (1989). Monomeric versus polymeric þ monomeric models for aqueous aluminium species: Constraints from low temperature natural waters in equilibrium with gibbsite under temperate and tropical climate.Chem.

Geol.76,403–417.

Bourrie´, G., Maıˆtre, V., and Curmi, P. (1994). Mise en e´vidence de deux dynamiques saisonnie`res du fer dans les sols hydromorphes en climat tempe´re´. Comptes Rendus de l’Acade´mie des Sciences, Parist. 318(Se´rie II), 87–92.

Bourrie´, G., Trolard, F., Ge´nin, J.-M. R., Jaffrezic, A., Maıˆtre, V., and Abdelmoula, M.

(1999). Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils.Geochim. Cosmochim. Acta63,3417–3427.

Bourrie´, G., Trolard, F., Refait, P., and Feder, F. (2004). A solid solution model for Fe(II) - Fe(III) - Mg(II) green rusts and fougerite and estimation of their Gibbs free energies of formation.Clays Clay Miner.52,382–394.

Bratsch, S. G. (1989). Standard electrode potentials and temperature coefficients in water at 298.15 K.J. Phys. Chem. Ref. Data18,1–21.

Caille`re, S., He´nin, S., and Rautureau, M. (1982). ‘‘Mine´ralogie des argiles.’’ 2nd Edn.

Masson, Paris.

Carlson, L., and Schwertmann, U. (1981). Natural ferrihydrite in surface deposits from Finland and their association with silica.Geochim. Cosmochim. Acta45,421–429.

Cary, L. (2005). Mobilite´ des e´le´ments selon les alternances ae´robie-anae´robie dans un e´cosyste`me rizicole en Camargue. The`se de Doctorat, Universite´ d’Aix-Marseille.

Cary, L., and Trolard, F. (2008). Metal mobility in the groundwater of a paddy field in Camargue (south eastern France). J. Geochem. Explor. 96, 132–143, doi:10.1016/j.

explo.2007.03.007.

Chaplot, V. (1998).Organisation spatiale des sols hydromorphes de fonds de valle´e—Mode´lisation pre´dictive de leur distribution. Ph-D thesis, E´ cole Nationale Supe´rieure Agronomique, Rennes.

Chaplot, V., Walter, C., Curmi, P., and Grimaldi, C. (2000). Caracte`res d’hydromorphie et variabilite´ temporelle de la presence de Fe(II) dans les couvertures pe´dologiques du Massif Armoricain. I. Exemple de deux topose´quences sur granite et sur schiste.C.R. Acad Sci.

Paris, Earth and Planetary Sci.330,125–132.

282 Fabienne Trolard and Guilhem Bourrie´

Chaudhuri, S. K., Lack, J. G., and Coates, J. D. (2001). Biogenic magnetite formation through anaerobic biooxidation of Fe(II).Appl. Environ. Microbiol.67,2844–2848.

Childs, C. W. (1981). Field tests for ferrous iron and ferric-organic complexes (on exchange sites or in water-soluble forms) in soils.Australian J. Soil Res.19,175–180.

Cornell, R. M., and Schwertmann, U. (2003). ‘‘The Iron Oxides.’’ 2nd Ed., VCH edition, Weinheim, Germany.

Cornell, R. M., Posner, A. M., and Quirk, J. P. (1976). Kinetics and mechanisms of the acid dissolution of goethite (a-FeOOH).J. Inorg. Nucl. Chem.38,563–567.

Couling, S. B., and Mann, S. (1985). The influence of inorganic phosphate on the crystalli- zation of magnetite (Fe3O4) from aqueous solution.JCS Chem. Comm.23,1713–1715.

Criaud, A., and Fouillac, C. (1986). E´ tude des eaux thermomine´rales carbogazeuses du Massif Central Francáais. I. Potentiel d’oxydo-re´duction et comportement du fer.

Geochim. Cosmochim. Acta50,525–533.

Driessen, P., Deckers, J., Spaargaren, O., and Nachtergale, F. (2001). Lecture notes on the major soils of the world. World Soil Resources Report N94, FAO, Rome.

Drissi, S. H., Refait, P., and Ge´nin, J. M. R. (1994). The oxidation of Fe(OH)2in the presence of carbonate ions: Structure of carbonate green rust one.Hyperfine Interact.90, 395–400.

Drissi, S. H., Refait, P., Abdelmoula, M., and Ge´nin, J. M. R. (1995). Preparation and thermodynamic properties of Fe(II) – Fe(III) hydroxycarbonate (green rust 1), Pourbaix diagram of iron in carbonate-containing aqueous media.Corros. Sci.37,2025–2041.

Feder, F. (2001). Dynamique des processus d’oxydo-reduction dans les sols hydromorphes—

Monitoring in situ de la solution du sol et des phases ferrife`res. The`se de Doctorat, Univ, Aix-Marseille.

Feder, F., Trolard, F., Klingelho¨fer, G., and Bourrie´, G. (2005).In situMo¨ssbauer spectros- copy—Evidence for green rust (fougerite) in a gleysol and its mineralogical transforma- tions with time and depth.Geochim. Cosmochim. Acta69,4463–4483.

Fortin, D., Leppard, G. G., and Tessier, A. (1993). Characteristics of lacustrine diagenetic iron oxyhydroxides.Geochim. Cosmochim. Acta57,4391–4404.

Fox, L. E. (1989). The solubility of colloidal ferric hydroxide and its relevance to iron concentrations in river water.Geochim. Cosmochim. Acta52,771–777.

Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Dong, H., Onstott, T. C., Hinman, N. W., and Li, S.-M. (1998). Biogenic iron mineralization accompagnying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium.

Geochimi. Cosmochim. Acta62,3239–3257.

Fritsch, E., Herbillon, A. J., do Nascimento, N. R., Grimaldi, M., and Melfi, A. J. (2007).

From plinthic acrisols to plinthosols and gleysols: Iron and groundwater dynamics in the tertiary sediments of the upper Amazon basin.Eur. J. Soil Sci.58,989–1006.

Fritz, B. (1981).E´tude thermodynamique et mode´lisation des re´actions hydrothermales et diage´ne´- tiques.Sciences Ge´ologiques Me´moires, Strasbourg 65.

Ge´nin, J. M.-R., Olowe, A. A., Resiak, B., Confente, M., Rollet-Benbouzid, N., L’Haridon, S., and Prieur, D. (1994). Products obtained by microbially-induced corro- sion of steel in a marine environment: Role of green rust two.Hyperfine Interact.93, 1807–1812.

Ge´nin, J.-M. R., Bourrie´, G., Trolard, F., Abdelmoula, M., Jaffrezic, A., Refait, P., Maıˆtre, V., Humbert, B., and Herbillon, A. (1998). Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)—Fe(III) green rusts; occurrences of the mineral in hydromorphic soils.Environ. Sci. Technol.32,1058–1068.

Ge´nin, J.-M. R., Refait, P., Bourrie´, G., Abdelmoula, M., and Trolard, F. (2001). Structure and stability of Fe (II) - Fe (III) green rust ‘‘fougerite’’ mineral and its potential for reducing pollutants in soil solutions.Appl. Geochem.16,559–570.

Geochemistry of Green Rusts and Fougerite 283

Gjems, O. (1963). A swelling dioctahedral clay mineral of vermiculite-smectite type in the weathering horizons of podzols.Clay Miner. Bull.5,183–193.

Glasauer, S., Langley, S., and Beveridge, T. J. (2002). Intracellular iron minerals in a dissimilatory iron-reducing bacterium.Science295,117–119.

Hansen, H. C. B. (1989). Composition, stabilization and light absorption of Fe(II) – Fe(III) hydroxy-carbonate (green rust).Clay Miner.24,663–669.

Hansen, H. B. C., and Koch, C. B. (1995). Synthesis and characterization of pyroaurite.

Appl. Clay Sci.10,5–19.

Hansen, H. C. B., Koch, C. B., Nancke-Krogh, H., Borggaard, O. K., and Srensen, J.

(1996). Abiotic nitrate reduction to ammonium: Key role of green rust. Environ. Sci.

Technol.30,2053–2056.

Hansen, H. C. B., Gulberg, S., Erbs, M., and Koch, C. B. (2001). Kinetics of nitrate reduction by green rusts: Effects of interlayer anion and Fe(II): Fe(III) ratio.Appl. Clay Sci.18,81–91.

Huang, Y. H., and Zhang, T. C. (2004). Effects of low pH on nitrate reduction by iron powder.Water Res.38,2631–2642.

IUSS Working Group WRB (1994). ‘‘World Reference Base for Soil Resources—Draft.’’

ISSS, ISRIC, FAO, Wageningen, Rome.

IUSS Working Group WRB (2006). World reference base for soil resources 2006—A framework for international classification, correlation and communication. World Soil Resources Report N 103, FAO, Rome.

Jaffrezic, A. (1997). Ge´ochimie des e´le´ments me´talliques, des nitrates et du carbone organique dissous dans les eaux et les sols hydromorphes—Agriculture intensive et qualite´ des eaux dans les zones humides de Bretagne. PhD thesis, ENSA, Rennes, Me´moire n79, Ge´osciences Rennes.

Johnson, T. M., and Bullen, T. D. (2003). Selenium isotope fractionation during reduction by Fe(II)-Fe(III) hydroxide-sulphate (green rust).Geochim. Cosmochim. Acta67,413–419.

Jolivet, J. P. (1994). De la solution a` l’oxyde—condensation des cations en solution aqueuse—chimie de surface des oxydes. Inter Editions/CNRS Editions, Paris.

Koch, C. B., and Mrup, S. (1991). Identification of green rust in a ochre sludge.Clay Miner.

26,577–582.

Kukkadapu, R. K., Zachara, J. M., Smith, S. C., Fredrickson, J. K., and Liu, C. (2001).

Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments.

Geochim. Cosmochim. Acta65,2913–2924.

Kukkadapu, R. K., Zachara, J. M., Fredrickson, J. K., and Kennedy, D. W. (2006).

Biotransformation of two-line silica ferrihydrite by a dissimilatory Fe(III) reducing bacterium: Formation of carbonate green-rust in the presence of phosphate.Geochimica et Cosmochimica Acta68,2799–2814.

Lanson, B., and Besson, G. (1992). Characterization of the end of smectite-to-illite transfor- mation: Decomposition of X ray patterns.Clays Clay Miner.40,40–52.

Latimer, W. M. (1952). ‘‘Oxidation Potentials.’’ 2nd Edn., Prentice Hall.

Lewis, L. W. (1997). Factors influencing the stability and properties of green rusts. In:Soils and Environment(K. Auerswald, H. Stanjek, and J. M. Bigham, Eds.), Adv. In GeoEcology, 30,p. 345–372. Catena Verlag.

Lin, R., Spicer, R. L., Tungate, F. L., and Davis, B. H. (1996). A study of the oxidation of ferrous hydroxide in slightly basic solution to producegFeOOH.Colloids and Surf. A:

Physicochemical and engineering aspects113,79–96.

Lindsay, W. L. (1979). ‘‘Chemical Equilibria in Soils.’’ J. Wiley & Sons, New York.

Loyaux-Lawniczak, S., Refait, P., Ehrhardt, J. J., Lecomte, P., and Ge´nin, J. M. R. (1999).

The reduction of chromate ions by Fe(II) layered hydroxides.Hydrol. Earth Syst. Sci.3(4), 593–599.

284 Fabienne Trolard and Guilhem Bourrie´

Loyaux-Lawniczak, S., Refait, P., Ehrhardt, J. J., Lecomte, P., and Ge´nin, J. M. R. (2000).

Trapping of Cr by formation of ferrihydrite during the reduction of chromate ions by Fe(II)-Fe(III) hydroxysalt green rusts.Environ. Sci. Technol.34,438–443.

Maıˆtre, V. (1991a). Protocole d’extraction, de conservation et de filtration des eaux libres du sols.Sci. du Sol.29,71–76.

Maıˆtre, V. (1991b). Ge´ochimie des eaux libres extraites de sols hydromorphes sur granite dans le Massif Armoricain—Mobilite´ du fer et dynamique saisonnie`re. PhD Thesis, Universite´ Paris VI.

Marshall, C. E. (1977). ‘‘Soils in place—The Physical Chemistry and Mineralogy of Soils.’’

vol. 2. John Wiley & Sons, New York.

McNeal, J. M., and Balistrieri, L. S. (1989). Geochemistry and occurrence of selenium: An overview. In ‘‘Selenium in Agriculture and the Environment’’ (L. W. Jacobs, Ed.), pp. 1–13. Soil Science Society of America, Madison, Wisconsin.

Mehra, O., and Jackson, M. L. (1960). Iron oxides removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317–327.

Mitchell, B. D., Smith, B. F. L., and De Endredy, A. S. (1971). The effect of buffered sodium dithionite solution and ultrasonic agitation on soil clays. Israelian J. Chem.9, 45–52.

Murad, E. (1988). Clays and clay minerals: What can Mo¨ssbauer spectroscopy do to help understand them?Hyperfine Interact117,39–70.

Murad, E. (1990). Application of 57Fe Mo¨ssbauer spectroscopy to problems in clay minerals and soil science: Possibilities and limitations.Advances in Soil Science12,125–157.

Murad, E., and Cashion, J. (2004). ‘‘Mo¨ssbauer Spectroscopy of Environmental Materials and their Industrial Utilization.’’ Kluwer Academic Publishers, Mechelen.

Myneni, S. C. B., Tokunaga, T. K., and Brown, G. E., Jr. (1997). Abiotic selenium redox transformations in the presence of Fe(II, III) oxides.Science278,1106–1109.

Nealson, K., and Saffarani, D. (1994). Iron and manganese in anaerobic respiration: Envir- onnemental significance, physiology and regulation.Annu. Rev. Microbiol.48,311–343.

Nguyen Kha, P., and Duchaufour, P. (1969). Note sur l’e´tat du fer dans les sols hydro- morphes.Sci. du Sol.1,97–110.

O’Loughlin, E. J., Kelly, S. D., Kemner, K. M., Csencsits, R., and Cook, R. E. (2003).

Reduction of AgI, AuIII, CuIIand HgIIby FeII/FeIIIhydroxysulfate green rust.Chemo- sphere53,437–446.

Olowe, A. A., and Ge´nin, J.-M. R. (1991). Mechanism of oxidation of ferrous hydroxide in sulfate aqueous media: Importance of the initial ratio of the reactants.Corros. Sci.32, 965–984.

Ona-Nguema, G., Abdelmoula, M., Jorand, F., Benali, O., Ge´hin, A., Block, J. C., and Ge´nin, J. M.-R. (2002). Iron (II, III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction.Environ. Sci. Technol.36,16–20.

Parkhurst, D., and Appelo, C. (1999). ‘‘User’s Guide to PHREEQC (version2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport and Inverse Geochemical Calculations.’’ Water Resources Investigations Report 99–429, Denver, Colorado.

Parmar, N., Gorby, Y. A., Beveridge, T. J., and Ferris, F. G. (2001). Formation of green rust and immobilization of nickel in response to bacterial reduction of hydrous ferric oxide.

Geomicrobiol. J.18,375–385.

Perret, D., Gaillard, J.-F., Dominik, J., and Atteia, O. (2000). The diversity of hydrous iron oxides.Environ. Sci. Technol.34,3540–3546.

Ponnamperuma, F. N. (1972). The chemistry of submerged soils.Advances in Agronomy24, 173–189.

Ponnamperuma, F. N., Tianco, E. M., and Loy, T. (1967). Redox equilibria in flooded soils: I.

The iron hydroxide systems.Soil Sci.103,374–382.

Geochemistry of Green Rusts and Fougerite 285

Refait, P., and Ge´nin, J. M. R. (1993). The oxidation of ferrous hydroxide in chloride- containing aqueous media and Pourbaix diagrams of green rust one.Corros. Sci.34(5), 797–819.

Refait, P., Abdelmoula, M., and Ge´nin, J. M. R. (1998a). Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions.

Corros. Sci.40,1547–1560.

Refait, P., Charton, A., and Ge´nin, J. M. R. (1998b). Identification, composition, thermo- dynamic and structural properties of a pyroaurite-like iron(II)-iron(III) hydroxy-oxalate green rust.Eur. J. Solid State Inorg. Chem.35,655–666.

Refait, P., Bon, C., Simon, L., Bourrie´, G., Trolard, F., Bessie`re, J., and Ge´nin, J.-M. R.

(1999). Chemical composition and Gibbs standard free energy of formation of Fe(II)- Fe(III) hydroxysulphate green rust and Fe(II) hydroxide.Clay Miner.34,499–510.

Refait, P., Simon, L., and Ge´nin, J. M.-R. (2000). Reduction of SeO24 anions and anoxic formation of iron(II)-iron(III) hydroxy-selenate green rust. Environ. Sci. Technol. 34, 819–825.

Refait, P., Abdelmoula, M., Trolard, F., Ge´nin, J.-M. R., Ehrhardt, J. J., and Bourrie´, G.

(2001). Mo¨ssbauer and XAS study of a green rust mineral; the partial substitution of Fe2þby Mg2þ.Am. Mineral.86,731–739.

Robert, M., and Tessier, D. (1974). Me´thode de pre´paration des argiles des sols pour les e´tudes mine´ralogiques.Ann. Agronomiques25,859–882.

Robinson, R. A., and Stokes, R. H. (1970). Electrolyte Solutions. Butterworths, London.

Roussel, H., Briois, V., Elkaim, E., de Roy, A., and Besse, J. P. (2000). Cationic order and structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] layered double hydroxides: A XRD and EXAFS study.Journal of Physical ChemistryB25,5915–5953.

Schlu¨ter, K. (2000). Review: Evaporation of mercury from soils—An integration and synthesis of current knowledge.Environ. Geol.39,249–271.

Schwertmann, U. (1979). Dissolution methods.In‘‘Data Handbook for Clay Materials and Other Non-Metallic Minerals’’ (H. van Olphen and J. J. Fripiat, Eds.), pp. 163–172.

Pergamon Press, Oxford.

Schwertmann, U., and Cornell, R. M. (2003). Iron oxides in the Laboratory. Preparation and Characterization. VCH edition, Weinheim.

Schwertmann, U., and Fechter, H. (1994). The formation of green rust and its transforma- tion to lepidocrocite.Clay Miner.29,87–92.

Segalen, P. (1971). Metallic oxides and hydroxides in soils of the warm and humid areas of the world: Formation, identification, evolution.In‘‘Natural Resources Research, XI.

Soils and Tropical Weathering’’ Proceedings of the Bandung Symposium, pp. 15–24.

UNESCO, Paris.

Simon, L., Refait, Ph., and Ge´nin, J.-M. R. (1998). Transformation of Fe(II)-Fe(III) hydroxysulphite into hydroxysulphate Green Rusts.Hyperfine Interactions.112,217–220.

Simon, L., Francáois, M., Refait, Ph., Renaudin, G., Lelaurain, M., and Ge´nin, J.-M. R.

(2003). Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis.Solid State Sciences5,327–334.

Singh, B., and Gilkes, R. J. (1992). Properties and distribution of iron oxides and their association with minor elements in the soils of south-eastern Australia. J. Soil Sci.43, 77–98.

Soil Survey Staff (1975). ‘‘Soil Survey Field Handbook, Technical monograph n5, Describ- ing and Sampling Soil Profiles’’ J. M. Hodgson (Ed.), Rothamsted, Experimental station, Harpenden, Herts.

Soil Survey Staff (1976). ‘‘Soil Survey Field Handbook, Technical Monograph n7, Soils and Field Drainage’’ (A. J. Thomasson Ed.), Rothamsted Experimental Station, Harpenden, Herts.

286 Fabienne Trolard and Guilhem Bourrie´

Soil Survey Staff (1999). Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. 2nd Ed. Agric. Handbook 436. Washington, DC, Natural Resources Conservation Service, United States Department of Agriculture.

Soulier, A. (1995). ‘‘Les formes solides du fer en milieu hydromorphe—Approches ge´chi- mique morphologique et mine´ralogique.’’ The`se de Doctorat, ENSA, Rennes.

Sparks, D. (2001). ‘‘Environmental Soil Chemistry.’’ 2nd Ed. Academic Press, Amsterdam.

Sposito, G. (1981). The thermodynamics of soil solutions. p. 223. Oxford Univ. Press, Oxford.

Srinivasan, R., Lin, R., Spicer, R. L., and Davis, B. H. (1996). Structural features in the formation of the green rust intermediate andg-FeOOH.Colloids Surf. A: Physicochemical and Engineering aspects113,97–105.

Stampfl, P. P. (1969). Ein basisches Eisen-II-III-Karbonat.Corros. Sci.9,185–187.

Stein, E. D., Cohen, Y., and Winer, A. M. (1996). Environmental distribution and trans- formation of mercury compounds—Critical review.Environ. Sci. Technol.26,1–43.

Stucki, J. W., Golden, D. C., and Roth, C. B. (1984a). Effects of reduction and reoxydation of structural iron on the surface charge and dissolution of dioctahedral smectites.Clays Clay Miner.32(5), 350–356.

Stucki, J. W., Low, P. F., Golden, D. C., and Roth, C. B. (1984b). Effects of oxidation state of octahedral iron on clay swelling.Clays Clay Miner.32(5), 357–362.

Stumm, W., and Sulzberger, B. (1992). The cycling of iron in natural environments:

Considerations based on laboratory studies of heterogeneous redox processes.Geochim.

Cosmochim. Acta56,3233–3257.

Suarez-lha, M., Pekhonen, S., and Hoffmann, M. (1994). Stability, stoichiometry and structure of Fe(II) and Fe(III) complexes with Di-2-pyridyl ketone benzoylhydrazone:

Environmental applications.Environmental Science and Technology28(12), 2080–2086.

Tamaura, Y., Yoshida, T., and Katsura, T. (1984). The synthesis of green rust IIðFeIII1 FeII2ị and its spontaneous transformation into Fe3O4.Bull. Chem. Soc. Jpn.57,2411–2416.

Tamm, O. (1922). Eine Method zur Bestimmung der organischen Komponenten des Gelcomplexes in Boden.Medd. Statens Skogsfo¨so¨ksanstalt19,385–404.

Tardy, Y., and Gac, J.-Y. (1968). Mine´raux argileux et vermiculite-Al dans quelques sols et are`nes des Vosges—Hypothe`se sur la ne´oformation des mine´raux a` 14 A˚ .Bull. du Serv. de la Carte Ge´ologique d’Alsace-Lorraine, Strasbourg21(4), 285–304.

Taylor, R. M. (1981). Colours in soils and sediments—A review.In‘‘International Clay Conference’’ (H. van Olphen and F. Veniale, Eds.), Developments in Sedimentology vol. 35, pp. 749–761, Elsevier, Amsterdam.

Taylor, R. M., and McKenzie, R. M. (1980). The influence of aluminum on iron oxides.

VI. The formation of Fe(II)-Al(III)-hydroxy-chlorides, -sulphates and-carbonates as new members of the pyroaurite group and their significance in soils.Clays and Clay Minerals 28,179–187.

Tessier, A., Fortin, D., Belzine, N., De Vitre, R. R., and Leppard, G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter—Narrowing the gap between field and laboratory measurements.Geochim. Cos- mochim. Acta60,387–404.

Trolard, F. (2006). Fougerite: From field experiment to the homologation of the mineral.

C. R. Geosci.338,1158–1166.

Trolard, F., and Bourrie´, G. (1999). L’influence des oxydes de fer de type ‘‘rouilles vertes’’

sur les se´quences d’oxydo-re´duction dans les sols.C.R. Acad Sci. Paris, Earth Planet. Sci.

329,801–806.

Trolard, F., Soulier, A., and Curmi, P. (1993). Les formes solides du fer en milieu hydro- morphe acide: Une approche compartimentale par dissolution se´lective.C.R. Acade´mie des Sci. Paris316-II,1463–1468.

Geochemistry of Green Rusts and Fougerite 287

Một phần của tài liệu Advances in agronomy volume 99 (Trang 281 - 294)

Tải bản đầy đủ (PDF)

(406 trang)