CHƯƠNG 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
2.2. Phương pháp nghiên cứu
2.2.2. Phương pháp hạn chế sai số
Có thể nói trong lĩnh vực điều khiển, bộ điều khiển PID được xem như một giải pháp đa năng cho các ứng dụng điều khiển tương tự hay điều khiển số. Hơn 90% các bộ điều khiển trong công nghiệp được sử dụng là bộ điều khiển PID. Nếu được thiết kế tốt, bộ điều khiển PID có khả năng điều khiển hệ thống đáp ứng tốt các chỉ tiêu chất lượng như đáp ứng nhanh, thời gian quá độ ngắn, độ quá điều chỉnh thấp, triệt tiêu được sai lệch tĩnh.
Luật điều khiển PID được định nghĩa:
Hình 2. 17: Sơ đồ khối của bộ P.I.D điều khiển động cơ DC
CHƯƠNG 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
37 SVTH: Lý Hiệp Thành
Trong đó 𝑢 là tín hiệu điều khiển và 𝑒 là sai lệch điều khiển (𝑒 = 𝑦𝑠𝑝 − 𝑦). Tín hiệu điều khiển là tổng của 3 thành phần: Tỉ lệ, tích phân và vi phân.
Hàm truyền của bộ điều khiển PID:
Các tham số của bộ điều khiển là 𝐾𝑃, 𝐾𝐼 (hoặc 𝑇𝑖), 𝐾𝐷 (hoặc 𝐾𝐷).
Thành phần tỉ lệ (P):
Tác động của thành phần tích phân đơn giản là tín hiệu điều khiển tỉ lệ tuyến tính với sai lệch điều khiển. Ban đầu, khi sai lệch lớn thì tín hiệu điều khiển lớn. Sai lệch giảm dần thì tín hiệu điều khiển cũng giảm dần. Khi sai lệch 𝑒(𝑡) = 0 thì 𝑢(𝑡) = 0. Một vấn đề là khi sai lệch đổi dấu thì tín hiệu điều khiển cũng đổi dấu.
Thành phần P có ưu điểm là tác động nhanh và đơn giản. Hệ số tỉ lệ 𝐾p càng lớn thì tốc độ đáp ứng càng nhanh, do đó thành phần P có vai trò lớn trong giai đoạn đầu của quá trình quá độ.
Tuy nhiên, khi hệ số tỉ lệ 𝐾𝑃 càng lớn thì sự thay đổi của tín hiệu điều khiển càng mạnh dẫn đến dao động lớn, đồng thời làm hệ nhạy cảm hơn với nhiễu đo. Hơn nữa, đối với đối tượng không có đặc tính tích phân thì sử dụng bộ P vẫn tồn tại sai lệch.
Thành phần tích phân (I):
Với thành phần tích phân, khi tồn tại một sai lệch điều khiển dương, luôn làm tăng tín hiệu điều khiển, và khi sai lệch là âm thì luôn làm giảm tín hiệu điều khiển,
38 SVTH: Lý Hiệp Thành
bất kể sai lệch đó là nhỏ hay lớn. Do đó, ở trạng thái xác lập, sai lệch bị triệt tiêu 𝑒(𝑡) = 0.
Đây cũng là ưu điểm của thành phần tích phân.
Nhược điểm của thành phần tích phân là do phải mất một khoảng thời gian để đợi 𝑒(𝑡) về 0 nên đặc tính tác động của bộ điều khiển sẽ chậm hơn. Ngoài ra, thành phần tích phân đôi khi còn làm xấu đi đặc tính động học của hệ thống, thậm chí có thể làm mất ổn định.
Người ta thường sử dụng bộ PI hoặc PID thay vì bộ I đơn thuần vừa để cải thiện tốc độ đáp ứng, vừa đảm bảo yêu cầu động học của hệ thống.
Thành phần vi phân (D):
Mục đích của thành phần vi phân là cải thiện sự ổn định của hệ kín. Do động học của quá trình, nên sẽ tồn tại một khoảng thời gian trễ làm bộ điều khiển chậm so với sự thay đổi của sai lệch 𝑒(𝑡) và đầu ra 𝑦(𝑡) của quá trình. Thành phần vi phân đóng vai trò dự đoán đầu ra của quá trình và đưa ra phản ứng thích hợp dựa trên chiều hướng và tốc độ thay đổi của sai lệch 𝑒(𝑡), làm tăng tốc độ đáp ứng của hệ.
Một ưu điểm nữa là thành phần vi phân giúp ổn định một số quá trình mà bình thường không ổn định được với các bộ P hay PI.
Nhược điểm của thành phần vi phân là rất nhạy với nhiễu đo hay của giá trị đặt do tính đáp ứng nhanh nêu ở trên.
2.2.2.2 Bộ điều khiển PID số
Trong thực tế công nghiệp, các bộ điều khiển PID có thể được cấu thành từ các mạch tương tự hoặc các cơ cấu chấp hành. Tuy nhiên với yêu cầu cao về độ chính xác và chống nhiễu tốt thì các bộ điều khiển như vậy chưa đáp ứng được yêu cầu. Cùng với sự phát triển của các ứng dụng nhúng hay trên nền vi xử lý, thì điều khiển số cũng là một lĩnh vực quan trọng. Các bộ điều khiển được số hóa để có thể thực thi với tốc độ cao và chính
CHƯƠNG 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
39 SVTH: Lý Hiệp Thành
xác hơn. Đồng thời việc xây dựng các bộ điều khiển trên nền máy tính số hay vi điều khiển cũng đơn giản hơn nhiều.
Dưới đây ta trình bày về việc xấp xỉ bộ PID trên miền thời gian sang dạng PID số. Việc lựa chọn tham số cho bộ PID số cũng tương tự như trên miền thời gian. Ngoài ra ta cần quan tâm đến một tham số quan trọng là chu kì lấy mẫu của vi điều khiển.
Từ công thức (2.10):
Ta sử dụng các công thức xấp xỉ tích phân lùi và phi phân lùi với chu kỳ lấy mẫu T.
Khi đó công thức (2.10) trở thành:
Viết gọn lại thành:
Trong đó:
40 SVTH: Lý Hiệp Thành
2.2.2.3 Chỉnh định tham số bộ điều khiển PID
Do từng thành phần của bộ PID có những ưu nhược điểm khác nhau, và không thể đồng thời đạt được tất cả các chỉ tiêu chất lượng một cách tối ưu, nên cần lựa chọn, thỏa hiệp giữa các yêu cầu chất lượng và mục đích điều khiển. Việc lựa chọn tham số cho bộ điều khiển PID cũng phụ thuộc vào đối tượng điều khiển và các phương pháp xác định thông số.
Có nhiều phương pháp để lựa chọn tham số cho bộ điều khiển PID. Trong bài luận văn này em chỉ trình bày về phương pháp phổ biến hay được dùng, đó là phương pháp dựa trên đặc tính quá độ của quá trình thu được từ thực nghiệm với giá trị đặt thay đổi dạng bậc thang (Phương pháp Ziegler-Nichols 1).
Đối tượng áp dụng của phương pháp này là các quá trình có đặc tính quán tính hoặc quán tính tích phân với thời gian trễ tương đối nhỏ. Mô hình động cơ sử dụng trong báo cáo được xấp xỉ về dạng quán tính bậc nhất. Dựa trên hai giá trị xác định được là điểm cắt với trục hoành.
Bộ điều khiển (P):
Với: 𝐾𝑃=1/𝑎 hoặc 𝜏/𝑘𝜃 Bộ điều khiển (PI):
Hình 2. 18: Xác định tham số của đặc tính quá tính
CHƯƠNG 2: ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
41 SVTH: Lý Hiệp Thành
Với: 𝐾𝑃=0.9/𝑎 hoặc 0.9𝜏/𝑘𝜃 𝑇𝐼=10/3𝜃 Bộ điều khiển (PID):
Với: 𝐾𝑃=1.2/𝑎 hoặc 1.2𝜏/𝑘𝜃 𝑇𝐼=2𝜃 𝑇𝐷=0.5𝜃 Phương pháp này có một số nhược điểm như sau:
Việc lấy đáp ứng tín hiệu bậc thang rất dễ bị ảnh hưởng của nhiễu và không áp dụng được cho quá trình dao động hoặc quá trình không ổn định.
Phương pháp kẻ tiếp tuyến để xác định các số liệu 𝜃 và 𝑎 kém chính xác.
Đặc tính đáp ứng của hệ kín với giá trị đặt thường hơi quá dao động.
Theo kinh nghiệm của một số chuyên gia, điều kiện áp dụng phương pháp này là tỉ số 𝜃/𝜏 nằm trong phạm vi 0.1-0.6. Nếu tỉ lệ này lớn hơn 0.6, ta cần áp dụng các phương pháp chỉnh định khác có để ý tới bù thời gian trễ. Ngược lại, với tỉ lệ nhỏ hơn 0.1 thường ứng với các hệ bậc cao, do đó cần bộ điều khiển bậc cao tương ứng để cải thiện đặc tính động học.
42 SVTH: Lý Hiệp Thành