Các nhân tố ảnh hƣởng đến tuổi bền của dụng cụ cắt

Một phần của tài liệu đồ án tốt nghiệp nghiên cứu ảnh hưởng của chế độ cắt đến tuổi bền của dao tại đỉnh (Trang 58 - 99)

2.2.2.1. Ảnh hƣởng của chế độ cắt đến tuổi bền của dụng cụ cắt

Chế độ cắt đặc biệt là vận tốc cắt và lượng chạy dao là tác nhân ảnh hưởng mạnh nhất tới tuổi bền. Kết quả thí nghiệm của Opitz và Konig được Trent đưa ra trên hình 2.10. Với mòn mặt trước quy luật mòn tương đối đơn giản, mòn tăng chậm cho tới vận tốc cắt tới hạn mà tại đó tốc độ mòn tăng vọt. Lượng chạy dao càng lớn thì vận tốc cắt giới hạn càng nhỏ. Với mòn mặt sau tốc độ mòn cũng tăng nhanh từ vận tốc cắt và lượng chạy dao giới hạn như mòn mặt trước vì từ tốc độ này các cơ chế mòn phụ thuộc nhiệt độ quyết định tuổi bền. Tuy nhiên ở dưới dải tốc độ này tốc độ mòn mặt sau tăng, giảm liên tục vì ở đây các cơ chế mòn không phụ thuộc vào nhiệt độ.

Hình 2.10: Ảnh hưởng của vận tốc cắt đến mòn mặt trước và mặt sau của dao thép gió S 12-1-4-5 dùng tiện thép AISI C1050, với t = 2mm.

Thông số hình học của dụng cụ: =80, =100, =40, =900, = 600, r=1mm, thời gian cắt T =30 phút [4].

Tuổi bền cho mỗi cặp dụng cụ và vật liệu gia công được xác định trong dải vận tốc cắt cao. Và đường cong Taylor của tuổi bền chỉ có ý nghĩa trong điều kiện cắt ở dải vận tốc cắt cao, vì khi đó tuổi bền của dụng cụ bị chi phối bởi các cơ chế mòn phụ thuộc nhiệt độ cao liên quan đến biến dạng, khuếch tán và ôxy hoá.

2.2.2.2. Vai trò của lớp phủ cứng trong việc tăng tuổi bền của dụng cụ

Một số thông số quan trọng khi nghiên cứu tuổi bền của dụng cụ cắt là chiều dài của hành trình cắt là V.T[m] và diện tích cắt là V.T.a[m2] là các hàm số của vận tốc cắt hay nhiệt độ. Khi tăng vận tốc cắt (nhiệt cắt) từ giá trị vận tốc thấp thì cả V.T và V.T.a đều tăng và đạt cực đại ở một giá trị xác định. Sau đó tiếp tục tăng vận tốc thì cả V.T và V.T.a đều giảm. Điều này thể hiện rõ trên hình 2.11 [4].

Hình 2.11: Quan hệ V.T-V và V.T.a khi cắt thép 40Cr bằng dao T15K6 với hs = 0,6 mm.(1) s = 0,037 mm/v: (2) s = 0,3 mm/v (3) s = 0,1 mm/v; (4) s = 0,5

mm/v.

Ảnh hưởng của vận tốc cắt và lượng chạy dao đến tuổi bền thông qua các cơ chế mòn diễn ra ở chế độ cắt đã cho phụ thuộc nhiều hay ít vào nhiệt độ. Do đó việc ứng dụng công thức Taylor phải cân nhắc trong từng trường hợp cụ thể.

Có thể thấy rằng lớp phủ cứng có tác dụng giảm ma sát trên mặt trước, giảm nhiệt độ cực đại và sự phát triển của trường nhiệt độ trong dụng cụ dẫn đến giảm mòn do nhiệt và tăng tuổi bền cho dụng cụ. Hơn nữa lớp phủ cứng tạo nên một lớp phân cách giữa VLGC và VLDC với khả năng chống dính, chống cào xước cơ học cao do tính trơ hoá học và độ cứng cao của nó là nguyên nhân giảm mòn và tăng tuổi bền. Ngoài ra tính chất nhiệt đặc biệt của lớp phủ còn làm giảm tỷ lệ truyền nhiệt vào phoi và dao là nhân tố quan trọng làm tăng tuổi bền của dụng cụ phủ khi cắt với chế độ cắt cao.

Tuy nhiên vai trò nâng cao tuổi bền của dụng cụ cắt khi sử dụng vật liệu phủ khác nhau thay đổi theo điều kiện gia công cụ thể. Hình 1.15 chỉ ra mối quan hệ giữa tuổi bền của dao tiện và phay mặt đầu thép gió phủ TiN, TiCN và TiAlN dùng để cắt thép cácbon SAE 4340 theo vận tốc cắt cho cả cắt liên tục (hình 2.12a) và cắt không liên tục (hình 2.12 b). Từ hai đồ thị có thể thấy rằng trong cắt liên tục (tiện) TiAlN có tác dụng nâng cao tuổi bền của dao thép gió tốt nhất sau đó đến TiN và cuối cùng là TiCN. Trái lại trong cắt va đập (phay) TiN lại có tác dụng nâng cao tuổi bền tốt nhất sau đó đến TiN và TiAlN. Như vậy mỗi loại vật liệu phủ đều có khả năng nâng cao tuổi bền của dụng cụ khác nhau tuỳ thuộc vào các điều kiện cắt trong đó dụng cụ được sử dụng [4].

Hình 2.12: (a) Quan hệ tuổi bền của dao thép gió phủ PVD theo vận tốc cắt dao tiện

(b) dao phay mặt đầu dùng để phay thép cácbon tôi cải thiện.

2.2.3. Phƣơng pháp xác định tuổi bền dụng cụ cắt

Nghiên cứu ảnh hưởng của các nhân tố của quá trình cắt đến tuổi bền T bằng

phương pháp thực nghiệm đo độ mòn cho phép mặt sau [hs]. Với các kết quả thực

xác lập. Trên cơ sở đó xác định được quan hệ giữa tuổi bền và các nhân tố ảnh hưởng.

Hình 2.13: Quan hệ giữa thời gian, tốc độ và độ mòn của dao

Quan hệ giữa tốc độ, độ mòn và thời gian được biểu thị trên hình 2.13. Với độ mòn cho phép [hs] đã xác định được thời gian làm việc của dụng cụ với các tốc độ khác nhau (t1 với V1; t2, t3 với V2, V3 với V1 <V2 <V3 <V4; t1, t2, t3, t4 chính là tuổi bền T của dụng cụ ứng với tốc độ V1, V2, V3, V4…) khi các yếu tố cắt khác được cố định. Trên cơ sở đó lập được đồ thị quan hệ giữa tốc độ và tuổi bền V-T hình 2.14 và chuyển sang đồ thị lôgarit hình 2.15.

Qua đồ thị quan hệ V-T ta thiết lập được công thức liên hệ giữa tốc độ và tuổi bền: lgV lg A mlgT (2- 9) m V.T m lg A lg V A lgT V T m const T A V m (2- 10)

Hình 2.15: Quan hệ giữa V và T (đồ thị lôgarit)

2.2.4. Tuổi bền của dao phay cầu phủ

Dụng cụ phủ với đặc điểm lớp phủ rất mỏng thường chỉ vào khoảng vài m đến vài chục m. Mà đặc trưng của dụng cụ phủ là khả năng cắt gọt sẽ giảm đi

đáng kể khi lớp phủ trên bề mặt bị mài mòn, bị nứt, bị bong cục bộ. Chính vì vậy có thể coi dụng cụ phủ có tuổi bền bằng tuổi thọ.

Đối với dao phay cầu phủ tuổi thọ sẽ được xét riêng cho từng vùng của lưỡi cắt (cung trên lưỡi cắt có quá trình cắt gọt diễn ra gần giống nhau). Vì cơ chế cắt gọt phụ thuộc vào đường kính thực tham ra cắt. Nếu xét một cách tổng thể theo quá trình mòn thì tuổi thọ của dao cầu sẽ là tổng tuổi thọ của các cung trên lưỡi cắt có quá trình cắt gọt diễn ra gần giống nhau.

Tuổi thọ của dụng cụ phủ thường được xác định như sau: - Theo chất lượng bề mặt gia công

- Xác định theo độ chính xác kích thước của chi tiết gia công - Xác định theo lượng mòn mặt sau hs

- Xác định theo lực, nhiệt độ cắt - Xác định theo khối lượng…….

2.3. Kết Luận chƣơng 2

Những nghiên cứu bản chất của quá trình mòn dụng cụ cắt cho thấy: Mòn, tuổi bền của dụng cụ cắt nói chung và của dụng cụ phủ nói riêng như là: (adsbygoogle = window.adsbygoogle || []).push({});

 Các dạng mòn, cơ chế mòn và cách xác định mòn của dụng cụ cắt nói chung.

 Mòn của dụng cụ phủ.

 Tuổi bền của dụng cụ cắt, cách xác định tuổi bền của dụng cụ cắt.

 Tuổi bền của dụng cụ phủ.

CHƢƠNG 3: NGHIÊN CỨU THỰC NGHIỆM ẢNH HƢỞNG CỦA CHẾ ĐỘ CẮT ĐẾN TUỔI BỀN CỦA DAO PHAY CẦU 10 PHỦ TiAlN KHI

GIA CÔNG THÉP HỢP KIM CR12MOV

Để có thể chọn được chế độ cắt hợp lý khi gia công thép hợp kim

CR12MOV bằng dao phay cầu ∅10 phủ TiAlN thì ở chương này ta tiến hành việc

thực nghiệm bằng cách dùng dao phay cầu phủ TiAlN để phay thép hợp kim CR12MOV với các chế độ cắt khác nhau. Tiến hành khảo sát ảnh hưởng của đồng thời các thông số chế độ cắt (S,V,t) đến tuổi bền của dao thông qua việc đánh giá độ nhám bề mặt khi thay đổi chế độ cắt khác nhau và lựu chọn được chế độ cắt hợp lí.

3.1. Sơ lƣợc về thép hợp kim

Thép hợp kim là loại thép mà ngoài sắt, cacbon và các tạp chất ra, người ta còn cố ý đưa vào các nguyên tố đặc biệt với một lượng nhất định để làm thay đổi tổ chức và tính chất của thép cho hợp với yêu cầu sử dụng. Các nguyên tố được dựa vào một cách cố ý như vậy được gọi là nguyên tố hợp kim. Các nguyên tố hợp kim thường gặp là:Cr, Ni, Mn, Si,W, V, Mo, Ti, Nb, Zr, Cu, B, N…và ranh giới về lượng để phân biệt tạp chất và nguyên tố hợp kim là như sau: Mn: 0,8 - 1,0%; Si:0,5-0,8%; Cr:0,2-0,8%; Ni:0,2-0,6%;W:0,1-0,6%; Mo; 0,05-0,2%; Ti, V, Nb, Zr, Cu>0,1%; B>0,002%.

Ví dụ: Thép chứa 0,7% Mn vẫn chỉ được coi là thép cacbon (nghĩa là Mn vẫn chỉ là tạp chất), chỉ khi lượng Mn≥1,0% mới đươc coi là thép hợp kim. Trong khi đó chỉ cần có≥0,1%Ti (hoặc V, Cu, Zr…) đã được coi là thép hợp kim.

Trong thép hợp kim, lượng chứa các tạp chất có hại như P.S và các khí oxy, hyđro, nitơ là rất thấp so với thép cacbon. Do việc khử tạp chất triệt để hơn và nhất là do phải cho vào các nguyên tố hợp kim, nên nói chung thép hợp kim đắt tiền hơn so với thép cacbon nhưng bù lại, thép hợp kim có những đặc điểm nổi trội hơn hẳn so với thép cacbon, hay nói khác đi, mục đích của việc hợp kim hóa như sau:

 Về cơ tính: Thép hợp kim nói chung có độ bền cao hơn hẳn so với thép cacbon, thể hiện đặc điểm rõ ràng sau khi nhiệt luyện (tôi và ram), do độ

thấm tôi của thép hợp kim được cải thiện rất nhiều so với thép cacbon, thép hợp kim càng cao, ưu việt này càng rõ. Tuy nhiên cần thấy rằng:

 Ở trạng thái không nhiệt luyện, ví dụ: trạng thái ủ, độ bền của thép hợp

kim không cao hơn nhiều so với thép cacbon.

 Sau nhiệt luyện, thép hợp kim có thể đạt được độ bền rất cao, nhưng cùng

với sự tăng độ bền, độ dẻo và độ dai lại giảm đi, do vậy phải chú ý tới mối quan hệ này để xác định cơ tính thích hợp.

 Cùng với sự tăng mức độ hợp kim hóa, tính công nghệ của thép sẽ xấu đi.

 Về tính chịu nhiệt (tính cứng nóng và tính bền nóng): Thép cacbon có độ cứng cao sau khi tôi, nhưng không giữ được khi làm việc ở nhiệt độ cao hơn 200ºC, do mectenxit bị phân hủy và xêmentit kết tụ. Nhiệt độ cao hơn, thép bị biến dạng do hiện tượng dão và bị oxy hóa mạnh… Các nguyên tố hợp kim cản trở khả năng khuếch tán của cacbon, làm mactenxit phân hóa và cacbit kết tụ ở nhiệt độ cao hơn, vì thế nó giữ đươc độ cứng cao của trang thái tôi và tính chống dão tới 600ºC, tính chống sự oxy hóa tới 800-1000ºC. Dĩ nhiên muốn đạt được trạng thái này, thép cần được hợp kim hóa bởi một số lượng tương đối cao. Ưu việt này của thép hợp kim được ứng dụng trong thép dụng cụ và thép bền nóng.

 Về các tính chất vật lý và hóa học đặc biệt: Như đã biết, thép cacbon bị gỉ trong không khí, bị ăn mòn mạnh trong các môi trường axit, bazơ và muối… Nhờ hợp kim hóa mà có thể tạo ra thép không gỉ, thép có tính giãn nở và đàn hồi đặc biệt, thép có từ tính cao và thép không có từ tính….Trong những trường hợp như vậy, phải dùng những loại thép hợp kim đặc biệt, với thành phần được khống chế chặt chẽ (và dĩ nhiên là đắt tiền).

Như vậy có thể nói rằng, nguyên tố hợp kim có tác dụng rất tốt, thép hợp kim là vật liệu không thể thiếu được trong chế tạo máy, dụng cụ, thiết bị nhiệt điện, công nghiệp hóa học…. Nó thường được làm các chi tiết quan trọng nhất trong điều kiện làm việc nặng, chịu mài mòn, va đập.

3.2. Cơ sở xác định tuổi bền của dao bằng thực nghiệm. 3.2.1. Lựa chọn chỉ tiêu xác định tuổi bền của dao

Tuổi bền của dao phay cầu được xác định bắt đầu từ khi dao bắt đầu cắt cho đến khi bắt đầu diễn ra giai đoạn phá huỷ ứng với mỗi chế độ cắt xác định. Trong điều kiện gia công tinh thì chất lượng bề mặt trong đó nhám bề mặt là thông số có ý nghĩa đến chất lượng sản phẩm. Để có thể đánh giá tuổi bền của dao phay cầu phủ TiAlN để gia công thép hợp kim CR12MOV có thể thực hiện theo phương pháp: Dùng chỉ tiêu chất lượng bề mặt để xác định giới hạn tuổi bền của dao. Cụ thể là khi tiến hành gia công ứng với mỗi chế độ cắt sẽ tiến hành kiểm tra chất lượng bề mặt theo chỉ tiêu độ nhám bề mặt. Giới hạn tuổi bền của dao được xác định là thời điểm giá trị độ nhám của bề mặt gia công thay đổi đột ngột.

Hình 3.1. Đồ thị thể hiện quan hệ giữa lượng mòn và thời gian

Trong quá trình gia công dụng cụ cắt sẽ trải qua 3 giai đoạn mòn. Để xác định giới hạn tuổi bền của dụng cụ cần phải xác định thời gian từ khi bắt đầu cắt đến thời điểm cuối cùng của giai đoạn mòn thứ 2. Như hình 3.1 là thời điểm ứng với điểm B. Thực chất quá trình mòn của dụng cụ ảnh hưởng trực tiếp đến chất lượng bề mặt gia công và được thể hiện rõ qua sự thay đổi về độ nhám bề mặt. Chính vì vậy có thể khẳng định rằng khi dao tiến đến giai đoạn mòn khốc liệt là lúc giá trị độ nhám bề mặt có sự thay đổi lớn. Đó là một trong những cơ sở để xác định tuổi bền của dụng cụ.

3.2.2. Độ nhám bề mặt và phƣơng pháp đánh giá 3.2.2.1. Độ nhám bề mặt

Độ nhám bề mặt hay còn gọi là nhấp nhô tế vi là tập hợp tất cả những bề lồi, lõm với bước cực nhỏ và được quan sát trong một phạm vi chiều dài chuẩn rất ngắn (l). Chiều dài chuẩn l là chiều dài dùng để đánh giá các thông số của độ nhám bề mặt (với l = 0,01 đến 25mm).

Độ nhám bề mặt gia công đã được phóng đại lên nhiều lần thể hiện trên hình 3.2. Theo TCVN 2511 – 1995 thì nhám bề mặt được đánh giá thông qua bảy chỉ tiêu. Thông thường người ta thường sử dụng hai chỉ tiêu đó là Ra và Rz, trong đó: (adsbygoogle = window.adsbygoogle || []).push({});

Hình 3.2: Độ nhám bề mặt

- Ra: Sai lệch trung bình số học của prôfin là trung bình số học các giá trị tuyệt đối của sai lệch prôfin (y) trong khoảng chiều dài chuẩn. Sai lệch prôfin (y) là khoảng cách từ các điểm trên prôfin đến đường trung bình, đo theo phương pháp tuyến với đường trung bình. Đường trung bình m là đường chia prôfin bề mặt sao cho trong phạm vi chiều dài chuẩn l tổng diện tích ở hai phía của đường chuẩn bằng nhau. Ra được xác định bằng công thức:

l n R = 1 ∫ yx . dx = 1 ∑ y (3-1) l 0 l i=1

- Rz: Chiều cao mấp mô prôfin theo mười điểm là trị số trung bình của tổng

các giá trị tuyệt đối của chiều cao năm đỉnh cao nhất và chiều sâu của năm đáy thấp nhất của prôfin trong khoảng chiều dài chuẩn. Rz được xác định theo công thức:

a

5 5 Rz =∑ ypm i i=1 +∑ yvm i i=1 5 (3-2)

Ngoài ra độ nhám bề mặt còn được đánh giá qua chiều cao nhấp nhô lớn nhất Rmax. Chiều cao nhấp nhô Rmax là khoảng cách giữa hai đỉnh cao nhất và thấp nhấ của độ nhám (prôfin bề mặt trong giới hạn chiều dài chuẩn l).

Cũng theo TCVN 2511 – 1995 thì độ nhám bề mặt được chia thành 14 cấp, từ cấp 1 đến cấp 14 ứng với các giá trị Ra và Rz. Trị số nhám càng bé thì bề mặt càng nhẵn và ngược lại. Độ nhám bề mặt thấp nhất (hay độ nhẵn bề mặt cao nhất) ứng với cấp 14 (tương ứng với Ra ≤ 0,01 µm và Rz ≤ 0,05 µm). Việc chọn chỉ tiêu Ra

hay Rz là tuỳ thuộc vào chất lượng yêu cầu của bể mặt. Chỉ tiêu Ra được gọi là thông số ưu tiên và được sử dụng phổ biến nhất do nó cho phép ta đánh giá chính xác hơn và thuận lợi hơn những bề mặt có yêu cầu nhám trung bình (độ nhám từ cấp 6 đến cấp 12). Đối với những bề mặt có độ nhám quá thô (độ nhám từ cấp 1 đến

Một phần của tài liệu đồ án tốt nghiệp nghiên cứu ảnh hưởng của chế độ cắt đến tuổi bền của dao tại đỉnh (Trang 58 - 99)