A lthough m any topics have been investigated in this thesis, the application w ith C FR P sheets still requires further research. T he follow ing should be investigated:
• M ore accurate FEA m odels should be dev elo p ed to p redict the full load-deflection response o f concrete structures. A fracture m echanics concept including stress-softening o f concrete should be included in the m aterial m odelling.
318 Y ail J. K im , P .E ng., P h.D . T hesis
C h ap ter 10: C onclusions and R ecom m endations
• T he com bined effect o f p restress levels in C FR P sheets and environm ental loads, such as freezing and thaw ing, low tem perature, and w et-d ry cycles, should be investigated to predict the long-term perfo rm an ce o f strengthened structures w ith prestressed C FR P sheets.
• A novel m echanical an ch o r sy stem should be developed to prestress C F R P sheets.
A lthough the currently used an chorage pro v id ed good perform ance, a m ore p ractical anchor system is necessary. M ech an ical bo n d o f C FR P sheets should b e consid ered to provide rapid execution o f p restressin g C FR P sheets com pared to the currently used chem ical bond, follow ed by the application o f non-m etallic anchor system d eveloped in this thesis.
• F atigue p erfo rm an ce on the develo p ed non-m etallic an ch o r system should be investigated. A po ssib le em pirical design equation should be proposed. T he cum ulative dam age theory m ay p rovide the n ecessary theoretical background for such research.
• T w o-w ay slabs w ith continuous spans should be studied to pro v id e a b etter understanding o f the actual b eh a v io u r in buildings. E xperim ental w o rk should be conducted u n d e r un ifo rm ly d istrib u ted load; rath er than concentrated load, considering practical aspects. O ptim um strengthening m ethods should be investigated such as the best zone to be strengthened w ith C FR P sheets. A p aram etric study based on calibrated F E A m odels should be cond u cted to p ro v id e design charts for various b o undary conditions o f tw o-w ay slabs.
319 Yail J. K im , P .E ng., P h.D . T hesis
F R P s should be prop o sed for practicin g engineers. A m ore practical stren g th en in g m ethod for prestressing C FR P sheets should be d eveloped w ithout drillin g the slab itself. A m ovable m echanical anchor system could be a p o ssible solution.
• A full-scale n o n lin ear solid F E A m odel should be developed to p re d ic t the b eh a v io u r o f an actual bridge. D etailed cracking b eh a v io u r and actual load-carrying capacity could be investigated. A m ore advanced co m puter system w ould b e n ecessary to solve the nonlin ear iterative solution.
• Intensive study based on calib rated F E A should be cond u cted to provide better predictio n o f live load d istributions on various bridge superstructures, resu ltin g in p ossible code revisions. L ive load d istributions on dam aged and repaired bridges should be studied to p ropose d esign equations.
320 Y ail J. K im , P .E ng., Ph.D . T hesis
Appendices
A ppendix A. M aterial P roperties
A ppendix B. In n o v ativ e F lexural S trengthening for R einforced C oncrete B eam s A ppendix C. R ep air o f B ridge G irder D a m ag ed b y Im pact L oads
A ppendix D. M odelling P ro p erties for F E A A ppendix E. P erm ission to P u b lish Form s
T he follow ing m aterial pro p erties are reported by the m anufacturer.
T able A .l M aterial properties o f W abo'8' M B race C F 160 P hysical P roperties
F ibre M aterial H igh S trength C arbon
A rial W eight 600 g/m 2 (0.124 lb /ft2)
F abric W idth 610 m m (24 in.)
N om inal T h ick n e ss1, tf 0.33 m m /ply (0.013 in./ply) F unctional P roperties
C TE -0.38 x 10'6 /°C (-0.21 x 10"6 /°F)
0° T ensile P roperties
U ltim ate T ensile S trength, /#, 3,800 M Pa (550 ksi)
T ensile M odulus, E f 227 G P a (33,000 ksi)
U ltim ate T ensile S trength p er U nit W idth,./#, tf 1.25 k N /m m /ply (7.14 kips/in./ply) T ensile M odulus p er U nit W idth, E f t f 76 k N /m m /ply (430 kips/in./ply)
U ltim ate R up tu re Strain, 1 .6 7 %
90° T ensile Pro perties
U ltim ate T ensile Strength 0
T ensile M odulus 0
U ltim ate R upture Strain N /A
T able A .2 M aterial properties o f Wabo® M B race C F 130 P hysical P roperties
F ibre M aterial H ig h S trength C arbon
A rial W eight 300 g/m 2 (0.062 lb /ft2)
F abric W idth 610 m m (24 in.)
N om inal T h ic k n e ss1, tf 0.165 m m /ply (0.0065 in./ply) F unctional P roperties
CTE -0.38 x 10'6 /°C (-0.21 x 10‘6 /°F)
0° T en sile P roperties
U ltim ate T ensile S trength, /#, 3,800 M Pa (550 ksi)
T ensile M odulus, E f 227 G Pa (33,000 ksi)
U ltim ate T ensile Strength p e r U nit W idth, /#, tf 0.625 k N /m m /ply (3.57 kips/in./ply) T ensile M odulus p er U nit W idth, E f t f 38 k N /m m /ply (215 kips/in./ply)
U ltim ate R upture Strain, e#, 1.67 %
90° T ensile Pro perties
U ltim ate T ensile Strength 0
T ensile M odulus 0
U ltim ate R up tu re Strain N /A
1: T he n om inal fabric thickness is based on the total area o f fibres (only) in a unit w idth.
F rom experience, the actual cured thickness o f a single ply lam inate (fibres plus saturating resins) is larger
322 Y ail J. K im , P .E ng., P h.D . T hesis
A ppendix A: M aterial P roperties
T able A .3 M aterial properties o f W abo* M B race S aturant P hysical P roperties
D ensity 983 k g /m 3 (61.3 pcf)
T en sile P roperties
Y ield S trength 54 M P a (7,900 psi)
Strain at Y ield 2.5 %
E lastic M odulus 3,034 M P a (440 ksi)
U ltim ate Strength 55.2 M P a (8,000 psi)
R upture Strain 3.5 %
P o isso n ’s R atio 0.40
C om pressive P roperties
Y ield Strength 86.2 M P a (12,500 psi)
Strain at Y ield 5.0 %
E lastic M odulus 2,620 M P a (380 ksi)
U ltim ate S trength 86.2 M P a (12,500 psi)
R upture Strain 5.0 %
F le x u ra li Properties
Y ield Strength 138 M P a (20,000 psi)
Strain at Y ield 3.8 %
E lastic M odulus 3,724 M P a (540 ksi)
U ltim ate S trength 138 M P a (20,000 psi)
R upture Strain 5.0 %
F unctional P roperties
CTE 35 x 10'6 /°C (20 x 10"6 /°F)
T herm al C onductivity 0.2 lW /m °K ( 1.45 B tu in./hr ft2 °F) G lass T ran sitio n T em perature 71 °C (163 °F)
323 Y ail J. K im , P .E ng., P h.D . T hesis
A ppendix B com plem ents the contents d iscussed in Ch. 4: In n o va tive F lex u ra l S tren g th en in g f o r R C B eam s w ith P restresse d C F R P S heets U sing a N o n -m e ta llic A n c h o r System . D etailed anchorage and typical test proced u res are show n in Figs. B .l and B .2, respectively.
Rear plate 25 0
2 5 0 x 2 5 0 x 1 2 ^ 150 U pper plate
100 x 162 x (V
S tiffener ' 4 4 x 44 x 6
25 0
70 2 5 0
250
R e a r v ie w T h r e a d e d ro d / ( * = 10)
2 5 0
F ro n t v ie w E n d -c a p a n ch o r
S tiffener Rod
\ / Rear plattT'"'^'
S id e plates 2 5 0 x 2 5 0 x 12
F a b ric a tio n
R ods ' 4 4 x 4 4 x 6 D 1 0 x 5 0
44 Plate
7 0 x 70 x 12
D 10
H ole
$25
J a ck in g a n ch o r
Fig. B .l. D etailed steel anchorage
44
S tiffen er J a c k in g ch a ir (u n its in m m )
324 Y ail J. K im , P.E ng., Ph.D . T hesis
A ppendix B: In n ovative F lexural S trengthening for R C B eam s (C h ap ter 4)
(a) Place the jacking anchor plate bonded with CFRP sheets and prestress the sheets
(c) Cure the strengthening system
(e) To be tested in flexure
fold
<=>
<=>
H
fold
I
r
(b) Apply U-wraps after tightening the nuts
, x s ’
/
Remove the steel anchorage
...
(d) Remove the steel anchorage by cutting the sheets
Fig. B.2 T ypical test p rocedure
D etailed instrum entation for the b eam testing is show n in Fig. B.3.
325 Y ail J. K im , P .E ng., Ph.D . T hesis
125 1550 125 150 150 400 400 400 150 150
j 00|5p 250 1000 2 50 j q i o p 40 0 x 4 5 0 x 0.33 g i 550 x 80 x 0.33 x 2
(J-l: Control)
0 1 0 - v
! G 2 0 (J-2) 0 2 3
G 1 G ? ■ ■ ■ U J G 8 G 9
• G 4 • i
• a . ( i 5
250 . 225
0 1 3 0 7
275 . 275 225 . 250 1500
150 150 400 400 400 150 150
4 0 0 x 4 5 0 x 0 . 3 3 G 2 5 5 5 0 x 80 x 0.33 x 2
0 1 5 — v -
! G 1 6 (J-3) ..01? A
G 2 0 \ \ G l
" o i l , " !
sd n 2* Si
T ^
G 2 3 - S ? G 2 4
i 3 i 2 , g l
150 100 225 2 7 5 GU 275 225 100 150 1500
G 10 a n d 1 1 a r e r e b a r s t r a i n s g = i n i t i a l l y b o n d e d ; G = b o n d e d a f t e r
1800
375 1050 375
5 5 0 x 80 x 0.33 x 2 layers Support plate 750 x 1 5 0 x 0.33
_ _ .
ITi*- £
g t£ ~
*
30 0 x 100 x 1.2
(J-5)
y 1200 x 150 x 0.33 x 3 layers
232C
V H I
(
7 inm G I 6
(
“ 4 *
G I 4 " “ 4 6 G 1 <
■ m ’7 m £ glO . g l 1
150 100 225 275 275 225 100 150
1500
G 10 a n d 11 a r e r e b a r s t r a i n s
G 12 a n d 13 w e r e b o n d e d a f t e r p r c s t r c s s i n g d u e t o m a l f u n c t i o n i n i g o f G 6 a n d G 7
1800
G 1 2 a n d 13 a r e r e b a r s t r a i n s g = i n i t i a l l y b o n d e d ; G = b o n d e d a f t e r c u r e
1800
150 150 400 400 4 0 0 150 150
4 0 0 x 4 5 0 x 0.33 c i s 550 x 80 x 0.33 x 2
. " ( J 1)' 1 " V
( J - 4 )
G 12 \ ...
G 8 J . G I O ... ...< 3 1 3 ' \ G 1 S
r I o n G 1 4 , 1
G 5
G l G 7
• G 3 ■
400 2oiY 200 40 0
300 1200 300
Ci 16 a n d 1 7 a r e r e b a r s t r a i n s g = i n i t i a l l y b o n d e d ; G = b o n d e d a f t e r c u r e
1800
375 1050 375
f 550 x 80 x 0.3 3 x 2 layers f
ilEZ * (J-6) 7- 4—
M r ~ i
y 1200 X 15 0 x 0.33 x 3 layers / y
,g 5 - g l I g 3 mgs
150 550
g 4
400 250 150 150. 150 150 550
g 4
40 0 250 150 150 150
125„ 175 11 1200 1751'1 2 5 ’1' ' l 7 5 " 1200 " ; 175:125;
1800 k p 1* I* p 1
1800
G 6 a n d 7 a r e r e b a r s t r a i n s
g = i n i t i a l l y b o n d e d ; G = b o n d e d a f t e r c u r e
G 6 a n d 7 a r e r e b a r s t r a i n s
g = i n i t i a l l y b o n d e d ; G :ft b o n d e d a l t e r c u r e
Fig. B .3. D etailed in strum entation for testing: B eam s J-l to J-6
326 Yail J. K im , P .E ng., P h.D . T hesis
A ppendix B: In n ovative F lexural S trengthening for R C B eam s (C h ap ter 4)
375 750 x 1 5 0 x 0.33
1800
1050 375 375
1800
1050 375
550 x 80 x 0.33 x 2 layers Support plate 30 0 x 100 x 1.2
G U 2 S G U I
0 -7 ) S G l i
S G U ‘
mooi
7=h
450 x 80 x 0.33 x 1 layer Support plate 75 0 x_150 x Q-33 55Q x 80 x 0.33 x 1 l a y e / \ 3 0 0 x'TOO x 1.2
$ £ T 0-8)
I Oi:
*
1200 x 1 5 0 x 0.33 x 3 layers / y Y 1200 x 1 5 0 x 0 .3 3 x 3 layers / y
g l - g - g d g 4 - g 5
• g 3 - g 6
150 550 40 0 25 0 150 1 5 0 1 5 0 ,
■I1501 550 40 0 25 0 150 150 150.,
p Tằ
125 175 ^ 1200 2 1 7 5 2 1 2 5 2 .,125, '175. ^ 1200 r
" 175''125'
k
1800 1800 K 1* 1ằ
S G S I a n d S G S 2 a r c r e b a r s t r a i n s g = i n i t i a l l y b o n d e d ; G ~ b o n d e d a f t e r c u r e
, 250 250 45 0 x 150 x 0 .33 CFRP anchor sh eet o n \ \ 2 5 0 x 5 0 x 0.33
~ruur~
S G U 2 C
G 1 a n d 2 a r c r e b a r s t r a i n s
g = i n i t i a l l y b o n d e d ; G = b o n d e d a f t e r c u r e
CFRP rolled-strip anchor
4 5 0 x 150 x 0.33~ CFRP anchor sh eet
G 1 3 1 2 5 0 x 5 0 x 0.33
—r=rsGU6
1_____■?. — I S G U 5
y 1200 x 150 x 0.33 x 3 layers / y
125 175 1200 175 125
1800 — H. -k V -
y 1200 X 150 x 0.33 x 3 layers / y
125 175 . 1200 . 175 .125.
1800
• g 5 , g 6
150 175 550 . 175 150
V — 1200 1*
----*
G I a n d 2 a r e r e b a r s t r a i n s
g = i n i t i a l l y b o n d e d ; G = b o n d e d a l t e r c u r e
■ S G F I ằisGl-l2
• S G F 3
• S G F 4
150 175 550 175 150i
*---
k n
1200 --- *
S G S I a n d S G S 2 a r e r e b a r s t r a i n s g - i n i t i a l l y b o n d e d ; G - b o n d e d a f t e r c u r e
Fig. B.3. D etailed instrum entation for testing (continued): B eam s J-7 to J-10
The strain variations on the C FR P sheets along the loading-span during the prestresin g operation and during the test are show n in F igs. B .4 and B.5, respectively. T he typical load levels w ere selected at 25 % , 50 % , 75 % and 100 % o f the ja c k in g force. N o te that the experim ental fitting curves do no t p ro v id e any inform ation. T he curves are show n to readily distinguish the v ariation o f the experim ental observation.
327 Y ail J. K im , P .E ng., Ph.D . T hesis
3000
500 1000
D istance from the end of CFRP (mm)
600 800 1000 1200 Distance from the end of CFRP (mm)
- J-3 (2 3 .9 kN )
5000 2 4000
3000 .2 2000 E
J-3 (7 1 .5 kN ) J-3 (9 2 .5 kN)
• 3000
1000 !
—* - J - 5 (2 2 .6 kN )
* - J - 5 (4 5 .3 k N ) ;
—* — J-5 (6 8 .9 k N ) | - * - J - 5 (9 1 .2 k N ) j
6000 5000
3000 .2 2000 1000
200 400 600 800 1000
D istance from the end of CFRP (mm)
( C )
—♦— J-6 (2 3 .7 k N ) : J-6 (4 2 .5 k N ) :
—* — J -6 (6 5 .3 k N ) [ --*•••• J -6 (9 2 .4 k N )'
200 400 600 800 1000
D istance from the end of C FRP (mm) 1200
(e)
CDC If) 10000
*3(1) E 8000 Q.
6000 'g'
O 4000
£
ro 2000 co
200 400 600 800 1000
Distance from the end of CFRP (mm)
(d)
200 400 600
- J-7 (2 3 .5 k N ).
- J - 7 (4 7 .6 kN ) - J - 7 (7 1 .8 k N ) 1 - J - 7 (95.1 k N ) ;
800 1000 1200 Distance from the end of CFRP (mm)
(f)
F ig . B .4 . S tr a in v a r ia tio n s o n th e C F R P s h e e ts d u r in g p r e s tr e s s in g : (a ) J - l ; (b ) J - 2 ; ( c ) J -3 ; (d ) J - 5 ; (e ) J - 6 ; ( 0 J -7
328 Yail J. K im , P .E ng., Ph.D . T hesis
A pp en d ix B: In n ovative F lexural S trengthening for R C B eam s (C h ap ter 4)
¥ 7000 w$ 6000
| 5000
„ 4000 H 3000
| o 2000
£ 1000
— J- 9 (2 0 .6 2 kN ) -ằ• J -9 (4 7 .9 kN )
J -9 (7 2 .5 kN ) - H - J - 9 (9 5 .6 k N )
_ 7000 CT)
$ 6000 0)
| 5000 0 4000 2 . 3000
2
1 2000
| 1000 if) 0
200 400 600 800 1000
D istance from the end of CFRP (mm) 1200
(g )
- J - 1 0 (2 4 .3 k N ) - J -1 0 (51 .1 kN ) - J - 1 0 (7 2 .5 kN ) - J - 1 0 (9 5 .7 k N )
200 400 600 800 1000
D istance from the end of CFRP (mm)
200 400 600 800 1000
Distance from the end of CFRP (mm)
(h)
(i)
F ig . B .4 . S tra in v a r ia tio n s o n th e C F R P s h e e ts d u r in g p r e s tr e s s in g ( c o n ti n u e d ) : (g ) J -8 ; (h ) J -9 ; (i) J - 1 0
4000
"oi 3500 c jg 3000 . 7 2500 :
£ 2000
'§ 1500 !
| 1000 :
500
0 0
if)
- J - 1 (4 2 .6 kN ) J-1 (8 4 .9 kN ) J-1 (1 2 7 .4 kN ) J-1 (1 6 9 .9 kN )
500 1000
D istance from the end of C FRP (mm)
1600 3 1400 c
ô 1 2 0 0 o tN 1 0 0 0
t 800
■§ 600
■| 400
ô 200
0
ằ— J-2 (28.1 kN)
*— J-2 (5 6 .4 kN) k— J-2 (84.1 kN) x— J-2 (1 1 2 .0 kN )
200 400 600 800 1000
D istance from the end of CFRP (mm)
(a) (b )
F ig . B .5 . S tra in v a r ia tio n s o n th e C F R P s h e e ts d u r in g b e a m te s tin g ( s tr a in s d u e to p r e s tr e s s in g w e r e e x c lu d e d ) : (a ) J - l ; (b ) J -2
329 Y ail J. K im , P .E ng., Ph.D . T hesis
’ 2500
500
• 2000
■ 1500
• 1 0 0 0
500
0
♦— J-3 (3 5 .0 kN )
ằ•••• J-3 (7 0 .6 kN ) J-3 (1 0 5 .2 kN ) J-3 (1 4 1 .7 kN )
600 800 1000 1200
400 200
D istance from the end of CFRP (mm)
(c)
- J - 5 (3 8 .4 kN ) - J - 5 (7 6 .4 kN ) - J - 5 (1 1 5 .2 kN ) - J - 5 (1 5 3 7 kN )
200 400 600 800
D istance from the end of C FRP (mm)
(e )
4000 3 3500
ô 3000 B
^ 2500
—)
£ 2000
§ 1500 I 1000 55 500
0
3000 05c 2500 a>
to 2000
“ 5
'o' 1500 o JE 1000
c 2 CO 500
- J-4 (3 4 .6 kN ) ! - J - 4 (6 9 .2 kN ) ' - J A (1 0 3 .2 k N ), - J - 4 (1 3 7 .9 k N );
200 400 600 800 1000 1200
D istance from the end of CFRP (mm)
(d)
- J - 6 (6 3 .0 k N ) :
•J -6 (84.1 k N ) - J - 6 (1 2 6 .2 kN ).
- J - 6 (1 2 6 .8 kN ):
200 400 600 800 1000
Distance from the end of C FRP (mm)
(f)
400 s
05c 350 A
toa) 300 250 o' 200
I 150 . —♦— J -7 (2 4 .2 kN )
c
to 100 ••••ằ•••• J-7 (4 8 .2 kN )
(O 50 J-7 (7 2 .3 kN )
♦
J-7 (9 6 .5 kN ) x
0
100 200 300 400
D istance from the end of CFRP (mm)
(g )
2000 a>1800 c 1600 (O B 1400 CO1200
~>
'o 1000 b 800 c 600 co 400 CO
200
J-8 (28 .1 k N )
•••ằ•••• J-8 (56 .1 k N )
— J- 8 (84 .1 k N ) J-8 (1 1 2 .4 kN )
200 400 600
D istance from the end of CFRP (mm)
(h )
F ig . B .5 . S tr a in v a r ia tio n s o n th e C F R P s h e e ts d u r in g b e a m te s tin g ( s tr a in s d u e to p r e s tr e s s in g w e r e e x c lu d e d ) ( c o n tin u e d ) : (c ) J -3 ; (d ) J - 4 ; (e ) J - 5 ; (f) J - 6 ; (g ) J - 7 ; (h ) J -8
330 Y ail J. K im , P .E ng., P h.D . T hesis
A pp en d ix B: In n ovative F lexural S trengthening for R C B eam s (C hap ter 4)
700
- ♦ — J-9 (2 0 .8 k N ).
2500
cn600 • s . . J-9 (4 1 .7 kN ) a>
IZ
\ —* — J -9 (6 2 .7 k N ) ' cn 2000
aj 500 •~ x -~ J -9 (8 3 .6 kN ) i Q>
m
400 n \ O—>1500
g"
o 300 ... _ \ o 'o 1000
[Ec 200 V E,
c
isCO ‘JO 500
if) 100 c5
200 400 600 800
D istance from the end of CFRP (mm)
- ♦ - J - 1 0 (3 2 .4 kN ) -♦ ••••J -1 0 (65.1 kN )
—* — 1-10 (9 7 .5 kN ) j-1 o (1 3 0 .0 k N )
400 600 800 1000
(i)
200
D istance from the end of CFRP (mm)
G)
F ig . B .5 . S tr a in v a r ia tio n s o n th e C F R P s h e e ts d u r in g b e a m te s tin g ( s tr a in s d u e to p r e s tr e s s in g w e r e e x c lu d e d ) ( c o n ti n u e d ) : (i) J - 9 ; (j) J - 1 0
S tr a in v a r ia tio n s b e f o r e a n d a f te r c u t tin g th e p r e s t r e s s e d C F R P s h e e ts a t ty p ic a l lo c a ti o n s a re s h o w n in F ig . B .6 .
500
0
SJ -500 g -1000
I~ -1500
CO
w -2000 -2500 -3000
0
-10 0 -20 -30 : -40 ■ -50 -60 -70
- E n d Q u a te r-s p a m - M id - s p a n
Time (Firs)
(a )
- Q u a r te r- s p a n : M id -s p a n
V
-90 -100
IV
Time (Firs)
40 20 0 co—> -20 -40 b
£ -60 c -80
CO
CO -100 -120 -140 -160
0
-10 0 -2 0 .
-30
- J -3 -P R E g_ 4 J -3 -P R E _ g _ 5 - J -3 -P R E _ g _ 6
Time (Firs)
(b )
-40 .E -60
co
W -70 -80 -90 -100
Q u a rte r-s p a n M id -s p a n
Time (Firs)
( b ) (d )
F ig . B .6 . S tr a in v a r ia tio n s b e f o r e a n d a f te r c u t tin g th e p r e s tr e s s e d C F R P s h e e ts : (a ) J -2 ( n e a r c u t - o f f p o in t, q u a r te r - s p a n , a n d m id - s p a n ) ; (b ) J -3 ( th re e g a u g e s a t m id - s p a n ) ; (c ) J- 5 ( q u a r te r - s p a n a n d m id - s p a n ) ; ( d ) J - 6 ( q u a r t e r - s p a n a n d m id - s p a n )
331 Y ail J. K im , P .E ng., P h.D . T hesis
0.1 0.2 ; Q.3; 0.4
M id -s p a n -1 M id -s p a n -2
Time (Hrs)
15 10
-0.2 -5 Of 0.2 -10
-15 -20 -25 -30 -35
)
Q u a rte r-s p a n M id -s p a n
— M id -s p a n -2
Time (Hrs)
(f)
80 60 | 9 40 S
I 20 !
£ ;
B 0 | "
CO -20 !***ô, -40 ! -60 '
- Q u a rt e r -s p a n ; M id -s p a n |
0.2 0.4 0.6 0.?
f f l r n F v
150 100
o 50
| - 5 0 ®
• § -1 0 0
■ | -1 5 0 ; CO
-200 -250 : -300
0.1 0.2 0.3 0.4 0.5 0.6
- Q u a te r- s p a n ; M id -s p a n
Time (Hrs)
(g )
Time (Hrs)
(h)
F ig . B .6 . S tr a in v a r ia tio n s b e f o r e a n d a f te r c u t tin g th e p r e s t r e s s e d C F R P s h e e ts ( c o n tin u e d ) : ( e ) J - 7 ( tw o g a u g e s a t m id - s p a n ) ; (f) J -8 ( o n e q u a r te r - s p a n a n d tw o m id s p a n s ) ; ( g ) J -9 ( q u a r te r - s p a n a n d m id - s p a n ) ; (h ) J - 1 0 ( q u a r te r - s p a n a n d m id - s p a n )
S o m e p i c tu r e s d u r in g p r e p a r a tio n o f th e t e s t b e a m s a r e s h o w n in F ig . B .7 .
F ig . B .7 . P r e p a r a ti o n o f th e te s t: ( a ) S te e l c a g e s h o w in g d o u b le r e in f o r c e m e n t; (b ) f a b r ic a te d e n d - c a p a n c h o r
332 Y ail J. K im , P .E ng., Ph.D . T hesis
A ppendix B: In n ovative F lexural S trengthening for R C B eam s (C h ap ter 4)
F ig . B .7 . P r e p a r a ti o n o f th e t e s t ( c o n ti n u e d ) : ( c ) p r e li m in a r y t e s t to in v e s tig a te th e p o s s i b le le v e l o f p r e s tr e s s ; (d ) p r e p a r e d j a c k i n g a n c h o r s ; (e ) s tr a i n g a u g e s b o n d e d o n C F R P s h e e ts a t m id - s p a n ; (f) c u r in g o f th e s t r e n g t h e n in g s y s te m ; ( g ) a p p l ic a tio n o f U - w r a p s w ith s tr a i n g a u g e s ; ( h ) p r e m a tu r e f a il u r e d u e to e x c e s s iv e e c c e n tr ic i ty a t a lo a d o f
1 0 0 k N ;
333 Y ail J. K im , P.E ng., Ph.D . T hesis
F ig . B .8 . F a ilu r e m o d e s o f te s te d b e a m s : (a ) c o m p le t e r u p tu r e o f te s te d b e a m ( J - l ) ; (b ) s tr o n g b o n d o f e p o x y r e s in ( J - l ) ; (c ) d e b o n d i n g f a il u r e o f U - w r a p (J - 2 ) ; ( d ) d e l a m i n a ti o n f a ilu re o f U - w r a p (J -3 ) ; (e ) e v e n - d e la m in a tio n o f U - w r a p (J -4 ) ; (f) in it ia t io n o f s h e a r - o f f c r a c k s ( J -5 )
334 Yail J. K im , P .E ng., P h.D . T hesis
A ppendix B: In n ovative F lexural S trengthening for R C B eam s (C h ap ter 4)
F ig . B .8 . F a ilu r e m o d e s o f te s te d b e a m s ( c o n ti n u e d ) : (h ) r u p tu r e o f m e c h a n ic a lly a n c h o r e d U - w r a p s ( J - 7 ) ; (i) b r o k e n r o d a t w e l d e d r e g io n (J -8 ); (j) d e b o n d i n g f a il u r e o f C F R P - a n c h o r e d U -w r a p s ; (k ) S h e a r - o f f c r a c k s p a s s in g th r o u g h th e s id e s h e e ts ( J -1 0 ) ; (1) s p a ll o f c o n c r e te a f te r c r u s h in g ( J - 1 0 )
335 Yail J. K im , P .Eng., P h.D . T hesis
( 2 0 0 4 ), a s s h o w n in F ig . B .9 . .
( a ) (b )
F ig . B .9 . T h e f in ite e l e m e n t a n a ly s i s f o r th e e n d - c a p a n c h o r : (a ) ty p ic a l m e s h g e n e r a tio n w ith o u t b o tto m p la te ; (b ) e l e m e n t s o lu t io n s w ith b o tto m p la te
• R e f e r e n c e
A N S Y S , 2 0 0 4 , A N S Y S o n lin e m a n u a l, A N S Y S In c .
336 Y ail J. K im , P .E ng., P h.D . T hesis
A ppendix C: R ep air o f B ridge G irder D am ag ed by Im p act L oads
Appendix C: Repair o f Bridge G irder D am aged by Im pact Loads
T h is s e c ti o n p r e s e n ts a d d i tio n a l in f o r m a ti o n o n C h a p te r s 8 a n d 9. T h is a p p e n d ix in c lu d e s th e d e t a il e d d e s ig n a n d a n a ly s i s w o r k c o n d u c te d f o r s tr e n g t h e n in g th e M a in S tr e e t B r id g e .
► Bridge inform ation
N a m e : T h e M a in S tr e e t B r id g e ( O v e r p a s s N o .4 ) , W i n n ip e g , M a n i t o b a ( F ig . C . l ) L e n g t h = 5 6 ,2 0 0 m m ( 1 4 ,0 2 0 m m @ 4 s p a n ) in c lu d in g m e tr ic c o n v e r s i o n e r r o r W i d th = 1 3 ,4 5 5 m m x 2 = 2 6 ,9 1 0 m m in to ta l ( tw o s e p a r a te b r id g e d e c k s ) A n g le o f s k e w = 5° 4 5 ’
G ir d e r s p a c in g = 1 ,2 1 9 m m
► Applied M om ent
T o c a lc u la t e th e a p p l ie d m o m e n t o n th e e x t e r io r g ir d e r , th e f o llo w in g a p p r o a c h e s w e r e c o n d u c te d .