1.2.1. Amoni trong nước rỉ rác
Trong môi trường nước, amoni có thể tồn tại ở dạng phân tử (NH3) hoặc ion (NH4+) tùy thuộc vào pH của nước. Ở dạng phân tử, amoni thường gọi amoniac là một chất khí không màu, mùi và sốc [8]. Amoniac tan khá tốt trong nước và độ tan phụ thuộc rất mạnh vào nhiệt độ dung dịch. Ở 0oC, độ tan của amoniac có thể lên đến 50% trong nước, ở 20oC giảm xuống còn khoảng 35% và ở 100oC thì độ tan của amoniac hầu như bằng 0%. Dung dịch amoniac lỏng bán ngoài thị trường thường có nồng độ amoniac từ 25 - 27%. Khi tan trong nước, amoniac kết hợp với ion H+ của nước tạo thành một dung dịch kiềm yếu theo cân bằng:
NH3 + H2O ↔ NH4+ + OH- (1) Amoni cũng có thể bị oxy hoá dưới tác dụng của các tác nhân oxy hoá tạo thành N2, NO2-, NO3-
phương trình:
. Với sự có mặt của oxy, amoni chuyển thành nitrat theo NH4+ + 2O2 → NO3- + H2O + 2H+ (2) 1.2.2. Tác động có hại của amoni trong nước
Trong môi trường nước amoni tồn tại lâu có thể chuyển hóa thành nitrit (NO2-) và nitrat (NO3-) là những chất có tính độc hại tới con người khi đi vào cơ thể, vì nó có khả năng chuyển hóa thành các hợp chất Nitrosamine là chất có khả năng gây
ung thư cho con người [14]. Vì vậy quy định về amoni trong nước là rất thấp (theo QCVN 08-MT: 2015/BTNMT là 0,3 mg/L theo cột A và 0,9 mg/L với cột B).
Trong nước, amoni làm giảm hiệu suất của giai đoạn clo hóa sát trùng nước (bước phổ biến trong công nghệ xử lý nước hiện hành), do xảy ra phản ứng nhanh giữa amoni và clo để chuyển hóa clo thành cloramin có tác dụng sát khuẩn yếu so với clo khoảng 100 lần. Amoni cùng với một số chất vi lượng trong nước (hữu cơ, phốt pho, sắt, mangan...) là nguồn dinh dưỡng - thức ăn để vi khuẩn, tảo phát triển, gây hiện tượng không ổn định sinh học của chất lượng nước sau xử lý. Nước có thể bị đục, đóng cặn trong hệ thống ống dẫn, bể chứa. Chính vì vậy, hàm lượng amoni trong nước luôn là vấn đề được các nhà khoa học quan tâm.
Độ độc của amoni phụ thuộc cao vào pH nước. Chẳng hạn như nó sẽ chuyển hóa thành ion amoni kém độc hơn ở pH thấp (pH < 7), amoni bắt đầu tồn tại chủ yếu ở dạng ion, nhưng ở pH > 7 các mức độc của amoni tăng lên do tăng dạng phân tử. Mức amoni tổng (NH3 + NH4+) chỉ ở khoảng 0,25 mg/L đã có thể gây nguy hại cho cá và các loài sinh vật nước khác. Riêng dạng phân tử (NH3), chỉ cần ở nồng độ rất thấp (0,01 - 0,02 mg/L) cũng đã có thể giết chết cá [18].
1.2.3. Một số phương pháp và công trình nghiên cứu xử lý amoni 1.2.3.1. Các phương pháp xử lý amoni
a, Phương pháp clo hóa
Clo là chất oxy hóa mạnh có khả năng oxy hóa amoni/amoniac ở nhiệt độ phòng thành N2. Khi hòa tan clo trong nước tùy theo pH của nước mà clo có thể nằm dạng HClO hay ion ClO- [3] do có phản ứng theo phương trình:
Cl2 + H2O → HCl + HClO (pH < 7) HClO → H+ + ClO- (pH > 8)
Khi trong nước có NH4+ sẽ xảy ra phản ứng sau:
HClO + NH3 → H2O + NH2Cl (Monocloramin) HClO + NH2Cl → H2O + NHCl2 (Dicloramin) HClO + NHCl2 → H2O + NCl3 (Tricloramin) Nếu có clo dư sẽ xảy ra phản ứng phân hủy các Cloramin:
(3) (4) (5) (6) (7)
HClO + 2NH2Cl → N2 + 3Cl- + H2O (8) Khi amoni phản ứng gần hết, clo dư sẽ phản ứng với các hợp chất hữu cơ có trong nước để hình thành nhiều hợp chất clo có mùi đặc trưng khó chịu [11].
b, Phương pháp trao đổi ion
Quá trình trao đổi ion là một quá trình hóa lý thuận nghịch trong đó xảy ra phản ứng trao đổi giữa các ion trong dung dịch điện ly với các ion trên bề mặt hoặc
bên trong các pha rắn tiếp xúc với nó. Quá trình trao đổi ion tuân theo định luật bảo toàn điện tích. Mức độ trao đổi ion phụ thuộc vào [3]:
- Kích thước hóa trị của ion.
- Nồng độ ion có trong dung dịch.
- Bản chất của chất trao đổi ion.
- Nhiệt độ.
c, Phương pháp sinh học
Đối với phương pháp sinh học nó bao gồm hai quá trình nối tiếp nhau là nitrat hóa và khử nitrat hóa như sau:
- Quá trình nitrat hóa:
Quá trình chuyển hóa về mặt hóa học:
NH4+ + 3 O2 → NO2-+ 2H+ + H2O 2
NO2- + 1 O2 → NO3- 2
Phương trình tổng:
(9) (10)
NH4+ + 2O2 → NO3- + 2H+ + H2O (11) Theo phản ứng hóa học diễn ra, đầu tiên, amoni được oxy hóa thành các nitrit nhờ các vi khuẩn Nitrosomonas, Nitrosospire, Nitrosococcus, Nitrosolobus. Sau đó các ion nitrit bị oxy hóa thành nitrat nhờ các vi khuẩn Nitrobacter, Nitrospina, Nitrococcus. Các vi khuẩn nitrat hóa Nitrosomonas và Nitrobacter thuộc loại tự dưỡng hóa năng [12]. Năng lượng sinh ra từ phản ứng nitrat hóa được vi khuẩn sử dụng trong quá trình tổng hợp tế bào. Nguồn cacbon để sinh tổng hợp ra các tế bào vi khuẩn tế bào mới là cacbon vô cơ (HCO3- là chính).
Quá trình nitrat hóa thường được thực hiện trong bể phản ứng sinh học với lớp bùn dính bám trên các vật liệu mang giá thể vi sinh. Vận tốc quá trình oxy hóa nitơ amoni phụ thuộc vào tuổi thọ của bùn (màng vi sinh vật), nhiệt độ, pH của môi trường, nồng độ vi sinh vật, hàm lượng amoni, oxy hòa tan, vật liệu lọc… Các vi khuẩn nitrat hóa có khả năng kết hợp thấp, do vậy việc lựa chọn vật liệu lọc nơi các màng vi sinh vật dính bám cũng có ảnh hưởng quan trọng đến hiệu suất làm sạch và sự tương quan sản phẩm của phản ứng sinh hóa. Sử dụng vật liệu mang phù hợp làm giá thể cố định vi sinh cho phép giữ được sinh khối trên giá thể, tăng tuổi thọ bùn, nâng cao và ổn định hiệu suất xử lý trong cùng một khối thể tích cũng như tránh được những ảnh hưởng do thay đổi điều kiện môi trường bên ngoài [18]. Quá trình nitrat hóa có hiệu quả cao khi hàm lượng oxy hòa tan lớn hơn 4 mg/L [8].
- Quá trình khử nitrat hóa:
Để loại bỏ nitrat trong nước, sau công đoạn nitrat hóa amoni là khâu khử nitrat sinh hóa nhờ các vi sinh vật dị dưỡng trong điều kiện thiếu khí (anoxic). Nitrit và nitrat sẽ chuyển thành dạng khí N2, NO, N2O là những khí có ảnh hưởng không đáng kể với môi trường [11].
Quá trình khử nitrat hóa là tổng hợp của bốn phản ứng nối tiếp nhau:
NO3- → NO2- → NO → N2O → N2 (12) Vi khuẩn khử tham gia vào quá trình khử nitrat hóa bao gồm: Balicilus, Pseudomnas, Methanomonas, Paracocas, Spiritum, Thiobacilus,… [16].
Để thực hiện phương pháp này, người ta cho nước qua bể lọc kỵ khí với vật liệu lọc, nơi bám dính và sinh trưởng của vi sinh vật khử nitrat. Quá trình này đòi hỏi nguồn cơ chất - chất cho điện tử. Chúng có thể là chất hữu cơ, H2S,… Nếu trong nước không có oxy nhưng có mặt của các hợp chất hữu cơ mà vi sinh hấp thụ được trong môi trường anoxic, khi đó vi khuẩn dị dưỡng sẽ sử dụng NO3- như nguồn oxy để oxy hóa chất hữu cơ (chất nhường điện tử), còn NO3- (chất nhận điện tử) bị khử thành khí nitơ.
1.2.3.2. Một số công trình nghiên cứu xử lý amoni
Amoni là một trong những đối tượng được quan tâm nghiên cứu loại bỏ trong nước thải vì hàm lượng cao cũng như tính chất độc hại của nó. Có nhiều nghiên cứu đã được thực hiện và có những kết quả khả quan. Dưới đây là một số ví dụ cụ thể:
Li và cộng sự [14] đã nghiên cứu xử lý amoni có trong nước rỉ rác tại một nhà máy ở Trung Quốc bằng phương pháp keo tụ hóa học. Nồng độ amoni (NH4+) giảm xuống còn 112 mg/L so với nồng độ ban đầu (5618 mg/L). Kết quả cho thấy hiệu quả xử lý amoni tốt nhất ở điều kiện pH = 8 và có bổ sung thêm hỗn hợp 2 muối:
MgCl2.6H2O và Na2HPO4.12H2O.
Mpenyana và cộng sự [15] đã nghiên cứu việc loại bỏ amoni từ nước rỉ rác bằng phương pháp lọc sinh học gián đoạn hai quá trình: nitrat hóa và khử nitrat tạo N2. Kết quả cho thấy sau quá trình nitrat hóa hàm lượng amoni giảm 84%. Sau 10 tuần thí nghiệm hiệu suất xử lý amoni tăng lên lên tới 99%. Sang đến quá trình khử nitơ thì hầu như NO3- đã được loại bỏ và tạo N2. Bên cạnh đó, kết quả cũng cho thấy khả năng xử lý COD là rất thấp, chỉ đạt 36% hiệu suất.
Kabdasli và cộng sự [13] đã nghiên cứu việc loại bỏ amoni từ bãi chôn lấp rác thải mới bằng việc tạo lắng magie amonium phosphate (MAP) trong môi trường nước
nhiều amoni, đồng thời loại bỏ khí NH3+ vào không khí. Trong nghiên cứu này, amoni được xử lý trong điều kiện kỵ khí. Kết quả cho thấy, ở điều kiện pH = 12 hàm
lượng NH4+ được loại bỏ cao từ 85 đến 90%. Bên cạnh đó, COD được xử lý với hiệu suất lên tới 80%.
Nicole và cộng sự [16] đã nghiên cứu loại bỏ amoni từ bãi chôn lấp rác thải cũ bằng việc sử dụng nồi phản ứng sinh học tại chỗ (Bioreactor). Hàm lượng amoni sau khi được xử lý tuy chưa có kết quả chính xác nhưng nằm trong khoảng thấp hơn giới hạn cho phép trong môi trường.
Zhu Liang và Junxin Liu [20] đã nghiên cứu về xử lý nước rỉ rác bằng phương pháp oxy hóa amoni yếm khí kết hợp với hệ thống thẩm thấu đất. Amoni và nitrit sẽ được oxy hóa trực tiếp thành N2 dưới điều kiện yếm khí. Quá trình này bao gồm một lò phản ứng nitrat hóa, một lò phản ứng oxy hóa NH4+ kỵ khí và hai hệ thống thẩm thấu đất. Kết quả nghiên cứu cho thấy, hàm lượng các chất thải còn lại có hàm lượng thấp: 22 – 58 mg NH4+/L, 32 - 250 mg COD/L với hiệu suất tương ứng là 97 và 89%. Phương pháp này có hiệu quả với nước rỉ rác có hàm lượng amoni cao và có khả năng hoạt động ổn định một thời gian dài.
Yang Deng và Casey M. Ezyske [19] đã nghiên cứu xử lý đồng thời chất hữu cơ ô nhiễm và amoni có trong nước rỉ rác bằng phương pháp oxy hóa tiên tiến gốc sunfua. Trong nghiên cứu này, tất cả các thí nghiệm được tiến hành trong một lò phản ứng hàng loạt có sự kiểm soát nhiệt độ. Kết quả nghiên cứu đã tìm ra được điều kiện tối ưu cho hiệu quả xử lý cao là: pH = 3 – 4 và nhiệt độ môi trường cao có thể loại bỏ được 79% COD và 91% NH4+.