Tư thế khuôn mặt người

Một phần của tài liệu Nghiên cứu một số kỹ thuật phát hiện hướng mặt người trong ảnh (Trang 51 - 64)

CHƯƠNG 3: CHƯƠNG TRÌNH THỬ NGHIỆM

3.2. Tư thế khuôn mặt người

Kỹ thuật xác định hướng mặt người trong ảnh tập trung vào việc phát hiện các tư thế, trạng thái khác nhau của khuôn mặt so với tư thế chuẩn. Đối tượng cần phân tích là khuôn mặt của một người trong tư thế chuẩn và các tư thế thay đổi. Dựa vào các thành phần được phát hiện trên khuôn mặt (mắt – mũi – miệng) làm cơ sở phát hiện, xác định hướng khuôn mặt và các góc quay so với tư thế chuẩn ban đầu.

Hình 3.1: Khuôn mặt chuẩn và các tư thế thay đổi

a, Tư thế chuẩn c, Hướng sang phải e, Hướng xuống dưới b, Hướng sang trái d, Hướng lên trên

(a) (b) (c) (d) (e)

3.3. Các tƣ thế khác nhau của khuôn mặt

Hình 3.2: Tư thế khuôn mặt khi hướng sang trái

Hình 3.3: Tư thế khuôn mặt khi hướng sang phải

Hình 3.4: Tư thế khuôn mặt khi hướng lên trên

Hình 3.5: Tư thế khuôn mặt khi hướng xuống dưới

Hình 3.6: Tư thế khuôn mặt khi hướng lên trên sang trái

Hình 3.7: Tư thế khuôn mặt khi hướng lên trên sang phải

Hình 3.8: Tư thế khuôn mặt khi hướng xuống dưới sang trái

Hình 3.9: Tư thế khuôn mặt khi hướng xuống dưới sang phải

3.4. Chương trình thử nghiệm

Trong chương 2, tác giả đã trình bày hai kỹ thuật phát hiện hướng mặt người trong ảnh: phát hiện hướng mặt người trong ảnh dựa trên tâm mắt và dựa theo các đặc trưng Haar. Kỹ thuật phát hiện hướng mặt người dựa trên tâm mắt tuy đơn giản nhưng còn nhiều tồn tại và hạn chế. Kỹ thuật này chỉ làm việc với mô hình 2D của khuôn mặt, không xác định được đầy đủ các góc quay của khuôn mặt. Ngược lại, kỹ thuật phát hiện hướng mặt người dựa theo các đặc trưng Haar có nhiều ưu điểm hơn. Việc vận dụng linh hoạt các đặc trưng Haar, thuật toán AdaBoost, mô hình Cascade of Classifier vào quá trình nhận dạng và phát hiện hướng khuôn mặt. Kỹ thuật này cho phép xác định đầy đủ và chính xác các góc quay của khuôn mặt. Do vậy, tác giả đã xây dựng chương trình thử nghiệm theo kỹ thuật phát hiện hướng mặt người dựa theo các đặc trưng Haar. Trong quá trình xây dựng chương trình thử nghiệm, tác giả sử dụng công cụ Visual C++ của Microsoft và thư viện mã nguồn mở OpenCV của Intel. Dưới đây là giao diện chính của chương trình.

Hình 3.10: Giao diện chính của chương trình

Chương trình sử dụng tập dữ liệu đầu vào là các ảnh thu được từ camera. Các ảnh mẫu này lưu lại quá trình thay đổi trạng thái của khuôn mặt, mô tả các tư thế khác nhau như: khuôn mặt ở tư thế thẳng đứng, hướng sang trái, hướng sang phải, hướng xuống dưới, hướng lên trên, hướng lên trên sang trái, hướng lên trên sang phải, hướng xuống dưới sang trái và hướng xuống dưới sang phải.

Hình 3.11: Chương trình nhận dạng các thành phần trên khuôn mặt Chương trình được thiết kế với các chức năng sau:

Chức năng quản lý các ảnh mẫu:

Chức năng quản lý các ảnh mẫu trong chương trình đưa ra một số khung ảnh làm mẫu, cho phép chụp các hình ảnh từ camera rồi tiến hành nhận dạng các đặc trưng bất biến của khuôn mặt (mắt – mũi – miệng). Sau đó tiến

hành lưu trữ các ảnh đã xử lý vào tập dữ liệu. Các bước của chức năng này thực hiện như sau:

- Mở camera quay mặt người hoặc lấy từ file video có sẵn - Phân tích, trích chọn đặc trưng của các ảnh làm mẫu so sánh

- Lưu mẫu vừa định nghĩa (lưu ảnh mẫu cùng với các điểm đặc trưng) Chức năng phân tích các điểm đặc trƣng, so sánh và kết luận

Các điểm đặc trưng ảnh hưởng trực tiếp đến kết luận của chương trình về các góc quay của khuôn mặt. Do đó việc quản lý, phân tích các điểm đặc trưng là quan trọng, cần thiết.

- Dựa trên các ảnh mẫu đã lưu lại, tiến hành phân tích các đặc trưng cơ bản (vị trí nhận dạng mắt – mũi – miệng) của khuôn mặt trên bức ảnh xử lý.

- Căn cứ vào các kết quả phân tích, sau khi so sánh, tính toán, hệ thống sẽ đưa ra kết luận phù hợp.

Hình 3.12: Chương trình nhận diện nhiều khuôn mặt

3.5. Một số trường hợp đặc biệt

Trong quá trình nhận dạng nhằm xác định hướng của khuôn mặt, một số thành phần “lạ” có thể xuất hiện trên khuôn mặt như: Kính mắt, mũ, ria mép,…. Ngược lại, một số thành phần trên khuôn mặt cũng có thể biến mất do bị che khuất bởi các thành phần khác hoặc do tư thế của khuôn mặt trong ảnh mẫu. Với việc xuất hiện, biết mất của các thành phần này, quá trình nhận dạng khuôn mặt gặp nhiều khó khăn. Khuôn mặt không được nhận dạng hoặc nhận dạng không đầy đủ các thành phần (Mắt – mũi – miệng). Các đặc trưng của khuôn mặt không được trích chọn, phân tích đầy đủ. Do đó có thể không xác định được hoặc xác định không chính xác các góc quay của khuôn mặt.

Hình 3.13: Sự xuất hiện của mắt kính trên khuôn mặt

Hình 3.14: Sự xuất hiện của chiếc mũ trên khuôn mặt

Hình 3.15: Sự xuất hiện của cả kính và mũ trên khuôn mặt

Hình 3.16: Khuôn mặt không được nhận dạng bởi góc quay quá lớn

Hình 3.17: Khuôn mặt không được nhận dạng do tư thế che khuất

PHẦN KẾT LUẬN

Ở nước ta hiện nay việc kiểm soát tự động đã có nhiều bước phát triển đáng kể, việc ứng dụng công nghệ nhận dạng mặt người vào các hệ thống giám sát tự động ngày một thiết thực và có khả năng ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống kinh tế xã hội.

Nhận dạng khuôn mặt là một lĩnh vực đã được đặt ra từ lâu và đã có hàng loạt các đề tài khoa học được xác lập, các công trình nghiên cứu được công bố, các ứng dụng được triển khai. Bài toán đã đặt ra nhiều thách thức, khó khăn khi thực hiện. Một trong những khó khăn trong quá trình nhận dạng gặp phải đó là xác định hướng của khuôn mặt. Đa số các bài toán nhận dạng khuôn mặt chỉ có thể thực hiện được hoặc đạt kết quả chính xác nếu các bức ảnh chứa khuôn mặt ở tư thế thẳng đứng, vuông góc với trục ống kính của máy ảnh. Bài toán phát hiện hướng khuôn mặt người trong ảnh sẽ góp phần không nhỏ vào quá trình nhận dạng mặt người. Sử dụng kết quả của bài toán phát hiện hướng khuôn mặt người trong ảnh vào giai đoạn tiền xử lý hình ảnh, những bức ảnh chứa khuôn mặt người ở các tư thế khác nhau sẽ được qui chuẩn làm cơ sở đầu vào cho các hệ thống nhận dạng. Với kết quả nghiên cứu của luận văn, bài toán nhận dạng mặt người có thể áp dụng để nhận dạng khuôn mặt ở nhiều góc nghiêng khác nhau.

Trong luận văn này tác giả đã tập trung nghiên cứu các kỹ thuật phát hiện hướng mặt người trong ảnh. Cụ thể sau quá trình nghiên cứu đã đạt được những kết quả sau:

- Trình bày khái quát về xử lý ảnh, nhận dạng khuôn mặt, bài toán phát hiện hướng mặt người trong ảnh.

- Hệ thống hóa một số vấn đề trong việc phát hiện hướng mặt người trong ảnh, xác định các góc quay của khuôn mặt trong mô hình 2D và 3D.

- Cài đặt thử nghiệm thuật toán, xây dựng chương trình thử nghiệm nhằm mô phỏng việc tính toán góc quay theo các chiều của khuôn mặt.

Trên cơ sở tìm hiểu về thư viện OpenCV, Boost, Qt và các thuật toán AdaBoost, Haar Feature, mô hình Cascade of Classifier, tác giả đã áp dụng trên các ảnh chụp từ camera để xác định được các vùng bao quanh khuôn mặt như: mắt, mũi và miệng. Từ việc xác định các vị trí đó kết hợp với các công thức để tính toán góc quay của khuôn mặt trong mô hình 3D. Ảnh sử dụng được chụp thông qua camera nên chất lượng chưa được tốt. Việc xác định các vị trí đạt tỉ lệ chính xác tương đối cao. Tuy nhiên khi góc quay còn nhỏ thì việc xác định sẽ chính xác. Với những góc quay lớn hơn thì các đặc điểm trên khuôn mặt có thể không xác định được hoặc chỉ xác định được một phần do giới hạn trong các lớp nhận dạng.

Luận văn mới chỉ dừng lại ở việc phát hiện các đặc điểm trên khuôn mặt và góc quay của khuôn mặt ở một giới hạn góc còn hạn chế.

Hướng phát triển của bài toán trong tương lai là sẽ xây dựng việc xác định góc quay của khuôn mặt với độ lớn hơn so với độ lớn góc hiện tại. Trong tương lai chúng ta có thể tiến hành biến đổi, tạo mẫu nhiều hơn cho tập các ảnh để tạo ra lớp nhận dạng classifier tốt hơn nhằm xác định góc quay một cách chính xác và giới hạn góc quay sẽ lớn hơn.

Trong thời gian tới tác giả sẽ tiếp tục thực hiện việc đưa chương trình vào trong các thiết bị di động sử dụng ảnh chụp từ camera của điện thoại thực hiện một số chức năng cho việc phát hiện tư thế chụp ảnh đẹp, các kỹ thuật bảo mật thông tin máy tính, nhận dạng khuôn mặt.…

Một phần của tài liệu Nghiên cứu một số kỹ thuật phát hiện hướng mặt người trong ảnh (Trang 51 - 64)

Tải bản đầy đủ (PDF)

(65 trang)