Do có nhiều ưu điểm trong phương pháp điều khiển, chất lượng hệ truyền động,…cùng với sự phát triển của điện tử công suất, điều khiển truyền động điện,…nên ngày nay biến tần trung áp và hệ truyền động biến tần động cơ không đồng bộ ngày càng được sử dụng nhiều cho các ứng dụng công suất lớn trong các nghành công nghiệp khác nhau. Chúng đang thay thế dần cho các hệ truyền động cũ cho chất lượng không cao, tốn nhiều chi phí bảo dưỡng, hiệu suất không cao…Trong công nghiệp sản xuất lớn thì nghành sản xuất xi măng là ngành có nhiều ứng dụng sử dụng hệ truyền động biến tần trung áp động cơ không đồng bộ.
Sản xuất xi măng là ngành có nhiều ứng dụng sử dụng hệ truyền động biến tần trung áp động cơ không đồng bộ.
Sản xuất ximăng là một ngành công nghiệp quan trọng của nền kinh tế. Đây cũng là ngành áp dụng nhiều tiến bộ của kỹ thuật vào sản xuất, đặc biệt là trong lĩnh vực truyền động điện. Tổng quan về công nghệ sản xuất xi măng cho trong hình 3.1.
Hình 3.1. Tổng quan công nghệ sản xuất xi măng
Khai thác đá vôi và đá sét
Đập đá vôi
Đập đá sét
Kho đồng nhất sơ bộ
Nghiền
liệu Đồng
nhất liệu
Lò nung
Xilo chứa clanke
Nghiền Xi măng
Đóng bao Nguyên
liệu tự nhiên hoàntoàn
Đập liệu về kích thước hoàn toàn
Xỉ sắt
Cát thạch anh
Nhiên
liệu Trợ
dung
Thạch cao Băng
tải
Nghiền khô đạt độ min yêu cầu
Phương pháp thổi khí qua xilo
Lò quay và gia nhiệt
Khoáng Clanke
Nghiền khô đạt độ min
Đóng bao hoặc nạp vào xilo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 55 Công nghệ sản xuất xi măng gồm các công đoạn chính sau:
- Khai thác và vận chuyển đá vôi - Công đoạn dập và vận chuyển đá sét - Kho chứa liệu
- Công đoạn nghiền liệu - Công đoạn đồng nhất liệu - Công đoạn nung Clinker - Công đoạn vận chuyển Clinker - Công đoạn nghiền xi măng - Công đoạn đóng bao.
Các hệ truyền động có thể nghiên cứu trong hệ thống:
- Hệ truyền động búa đập & nghiền clinker - Hệ truyền động băng tải(cân đo điện tử)
- Hệ truyền động cho hệ rải liệu, cào liệu tự động dùng PLC - Hệ truyền động gàu nâng máy thủi khí để nâng liệu lên tháp xây - Hệ truyền động quay lò nung
- Hệ truyền động máy nghiền liệu, nghiền clinhke
- Hệ truyền động cho các hệ thống quạt gió làm mát, máy hút bụi…
Trong giới hạn của đồ án, em nghiên cứu biến tần trung áp để điều khiển động cơ quạt gió hồi lưu nhiệt. Quạt gió lọc hồi lưu nhiệt là một thành phần của hệ thống lò quay trong công đoạn nung clinker. Trong các hệ thống lò quay thế hệ cũ với bộ làm nguội kiểu hành tinh thì không có đường thu hồi nhiệt nên không có quạt hồi lưu. Vì vậy hệ thống cũ không thu hồi lượng nhiệt làm mát clinker thải ra để cung cấp cho buồng phân huỷ và lò nung, đồng thời không tiết kiệm được nhiên liệu, làm tăng chi phí sản xuất và gây ô nhiễm môi trường.
- Hệ thống lò gồm bốn thành phần cơ bản sau:
+ Cyclo tháp trao đổi nhiệt + Buồng phân huỷ + Ống lò
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 56 + Bộ làm nguội.
Trong đó tháp cyclo trao đổi nhiệt thường có từ bồn đến sáu tầng. Tháp cyclo trao đổi nhiệt làm nhiệm vụ sấy và gia nhiệt cho bột liệu trước khi vào buồng phân huỷ. Buồng phân huỷ được đặt thẳng đứng. Mục đích của buồng phân huỷ là để cho quá trình canxi hóa xảy ra ngoài lò quay. Bộ làm nguội thường dùng trong hệ thống này là bộ làm nguội kiểu ghi vì khi nó mới có cửa ra khí nóng để hồi lưu. Một phần khí nóng cung cấp cho buồng phân huỷ được lấy từ bộ làm nguội qua ống dẫn gió hồi lưu. Trước khi dùng cho quá trình đốt, khí nóng hồi lưu từ máy làm nguội đựơc trộn với khí lò. Khí lò vào buồng phân huỷ theo trục thẳng đứng tại đáy hình con trong khi đó khí hồi lưu vào theo phương tiếp tuyến tạo ra xoáy trung bình đảm bảo sự kết hợp hiệu quả của nhiên liệu, bộ liệu và khí. Nhiệt độ khí trong buồng phân huỷ và trong tầng cyclo đáy vào khoảng 870°c đến 900°c, với nhiệt độ này tốc độ canxi hoá của liệu là khoảng 90% đến 95%. Trong hệ thống lò có buồng phân huỷ thường quá trình nung trong lò tiêu tốn khoảng 310-330kcal/kg clinker, phần chênh lệch với tổng nhiệt lượng tiêu thụ được hồi lưu tại buồng phân huỷ.
Điều này làm phân chia nhiên liêu giữa lò và buồng phân huỷ vào khoảng 40%/60% đến 45%/55%.
- Quạt hồi lưu nằm ở phía cuối của hệ thống lò. Nó ở vị trí ngay sau bộ làm nguội. Nó có nhiệm vụ đẩy khí nóng thải ra của bộ làm nguội trở lại buồng phân huỷ. Lưu lượng khí nóng hồi lưu về buồng phân huỷ phải được điều chỉnh thích hợp. Nếu lưu lượng hồi lưu về nhiều quá thì làm cho áp suất trong bộ làm nguội giảm, nhiệt độ giảm nhanh có thể làm ảnh hưởng đến chất lượng clinker. Nếu lưu lượng khí nóng hồi lưu quá ít thì clinker lâu nguội làm ảnh hưởng đến suet của hệ thống và lượng nhiệt đưa về buồng phân huỷ ít không đảm bảo cho quá trình canxi hoá đồng thời làm giảm nhiệt lượng của liệu vào lò khí cho phải tăng nhiên liệu vào lò nung. Ở hệ thống cũ thì lưu lượng khí nóng hồi lưu được điều chỉnh bằng thay đổi độ mở van trong khi tốc đọ quạt gió là không đổi. Cách điều chỉnh như vậy gây tổn hao lớn nhất là khi công suất của quạt gió hồi lưu rất lớn. Ở hệ thống mới ngay nay lưu lượng khí hồi lưu được điều chỉnh bằng cách thay đổi tốc độ quạt hồi lưu. với cách điều chỉnh này thì người ta dùng hệ truyền động cơ không đồng bộ rôto lồng sóc và biến tần trung áp.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 57 Hinh 3.2. Sơ đồ hệ thống lò quay nung Clinker
Ở đây ta nghiên cứu biến tần trung áp cho động cơ quạt hồi lưu có các thông số sau:
- Công suất định mức: Pdm= 2000 kw - Điện áp định mức: Udm=6 kV AC - Dòng điện định mức: idm= 227 A - Tốc độ định mức: ndm= 1470vòng/phút - Số cặp vực: Pp=2
- Tần số định mức: fdm= 50hz - Hệ số công suất: cosυ= 0,88 - Mômen định mức: Mdm= 12811N.m - Mômen quán tính: J= 20,6kg.m2 3.2. Tính chọn mạch lực.
Sơ đồ mạch lực như hình vẽ:
Bộ làm nguội Quạt hồi lưu
nhiệt hồi lưu
Ống lò
W03M1
A55 A54
A53 A52
A51 Cấp
liệu J14 J15P2
Tháp làm lạnh
K11 Lọc bụi tĩnh điện
P26 J2P27
Ống khói
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 58
D1b
_ +
Ud
S4a S3a
D2a S2a
S1a D1a S1b
S2b
D2b
S3b
S4b S4c
S3c
D2c S2c
S1c D1c
Z Cd1
Cd2
D3a
D4a
D3b
D4b
D3c
D4c
M Dz1a
Dz1a
Dz1b Dz1c
Dz2c Dz2b
Hình 3.3. Mạch lực.
Ta có động cơ có điện áp định mức là 6000V (đây là Ud) và điện áp vào của biến tần là 3 pha 6000V. Đây là bài toán chọn van nên để đơn giản trong việc tính chọn các van của bộ biến đổi, ta giải thiết rằng hiệu suất của các bộ chỉnh lưu, nghịch lưu là đều bằng 100%.
Với giả thiết này là giá trị dòng điện trung bình đi qua các van tính được sẽ nhỏ hơn so với thực tế. Do đó, sau này ta cần nhân hệ số dự trữ cao để bù đắp lại sai số mà ta đã giả thiết trong quá trình tính toán này. Đối với bộ nghịch lưu thì ta coi thành phần sóng điện áp ra của nó chỉ là sóng điều hoà bậc 1(vì nó chiếm tới 96% giá trị điện áp ra).
- Giá trị điện áp ra sau bộ chỉnh lưu là: Ud U 8105V 3 .6000 34 , 2 . 34 ,
2 2
- Ta coi hiệu suất bộ chỉnh lưu và nghịch lưu là 100%.
A
U I P
d d
d 246,6
8105 2000000
3.2.1. Chọn van cho mạch nghịch lưu.
- Điện áp ngược đặt lên IGBT:
k U N
Vdev( 1) 2 phload.
Uphload là điện áp pha yêu cầu trên tải.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 59 K hệ số dự trữ.
N số mức của bộ nghịch lưu.
Ta có N=3. Ta chọn K=1,7
V Udev 2.1,7.6000 3(31)4164 - Dòng điện qua van IGBT:
A k
U P
Id dm .1,5 137,12
6000 . 3
) 88 , 0 1 .(
2000000 .
. 3 / ) cos 1 .(
max
2 / 1 2 1
2 / 1
2
- Điện áp ngược trên diot song song ngược của IGBT:
Ta chọn gần đúng như sau:
UD dev=Udev≥4164V
- Dòng điện trên diot song song ngược của IGBT:
Dòng điện trên diot song song ngược của IGBT phụ thuộc nhiều yếu tố như dòng điện pha của tải yêu cầu, góc lệch pha giữa dòng điện và điện áp…Tuy nhiên ta có thể tính gần đúng nó bằng dòng điện pha trên tải hay chính là bằng dòng qua tranzitor:
ID=137,12A - Điện áp ngược trên điốt kẹp:
VD clamp=kD.Ud/(N-1)=1,3.8105/2=5268,25 V - Dòng điện qua điôt kẹp:
N A
IDclamp Idev 34,28
) 1 3 ( 2
12 , 137 ) 1 (
2
- Chọn tụ C:
Ta chọn tụ C có giá trị càng lớn càng tốt.
- Với tính toán như trên ta chọn các van như sau:
+ Ta chọn và cho mạch nghịch lưu như sau:
Ngày nay các hãng chế tạo thiết bị bán dẫn công suất thường chế tạo IGBT ở dạng module chịu được điện áp cao dòng điện lớn có tích hợp sẵn các diot song song ngược vì vậy ở đây ta chọn IGBT loại này, do đó ta không cần chọn điôt ngược riêng cho IGBT. Ta chọn IGBT dạng module là MBN300E45A của hãng HITACHI có các thông số sau:
Imax=300A
Vces=Ungược-max=4500V
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 60 Icp=600A
Vces(sat)=ΔU=5,5V Tj=Tcp=125°C
+ Ta chọn diot kẹp là loại MDM200E45A của hãng HITACHI có các thông số như sau:
Imax=200A
Vces=Ungược-max=4500V Icp=400A
Vces(sat)=ΔU=4,5V Tj=Tcp=125°C
3.2.2. Tính toán bảo vệ quá nhiệt cho các van.
Có 4 loại phát nhiệt trên các van bán dẫn là:
- Phát nhiệt trong trạng thái dẫn dòng của van. Khi van dẫn, do có sụt áp trên các pha nên công suất toả nhiệt trên van sẽ bằng dòng đi qua van nhận với sụt áp trên van.
- Phát nhiệt trong trạng thái không dẫn dòng của van. Khi vàn không dẫn dòng thì qua van có dòng điện rò. Do đó trên van sẽ có một lượng công suất toả nhiệt là bằng điện áp ngược nhân với dòng rò.
- Phát nhiệt trong trạng thái quá độ của van. Cả khi van tắt và van dẫn thì đều có toả nhiệt.
Khi van đang dẫn dòng mà chuyển sang trạng thái tắt thì dòng điện giảm từ từ về 0. Trong khi đó thì điện áp lại tăng dần từ giá trị điện áp sụt áp lên giá trị điện áp ngược. Do đó, nó cũng gây ra một lượng công suất toả nhiệt đáng kể. Và trong quá trình ngược lại thì cũng tương tự như vậy.
- Phát nhiệt trong quá trình phát xung mở van (Chỉ đối với những van điều khiển được).
Khi phát xung mở van thì cũng làm nóng cực điều khiển.
Tuy nhiên, trong 4 loại phát nhiệt cho van này thì loại hình phát nhiệt đầu tiên là lớn nhất. Do đó, trong quá trình thiết kế ta chỉ cần quan tâm đến loại hình phát nhiệt này.
* Tính toán bảo vệ quá nhiệt cho IGBT mạch nghịch lưu.
- Tổn thất công suất trên mỗi van:
ΔP=ΔU.Itb=5,5.137,12=754,16W - Diện tích bề mặt toả nhiệt:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 61
m
TN k
S P
Trong đó:
ΔP là tổn hao công suất W
τ độ chênh lệch nhiệt độ so với môi trường C km hệ số toả nhiệt đối lưu bức xạ W/m2.°C
- Ta chọn nhiệt độ môi trường là Tmt=40°C, nhiệt độ làm việc trên cánh tản nhiệt là Tlv=100°C
τ =Tlv-Tmt=100-40=60°C
- Do đó ta có diện tích tản nhiệt loại 10 cánh có kích thước mỗi cánh là 20x20 STN=754,16/(20.60)=0,63m2
chọn cánh tản nhiệt loại 10 cánh có kích thước mỗi cánh là: 20x20 Tổng diện tích của cánh tản nhiệt là:
STN=10.2.0,2.0,2=0,8m2.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 62 CHƯƠNG IV