THỰC NGHIỆM TRÊN MÔ HÌNH

Một phần của tài liệu Thuật toán PID thích nghi dùng mạng nơ ron điều khiển hệ con lắc ngược đơn (luận văn thạc sĩ) (Trang 60 - 80)

Xây dựng chương trình thực nghiệm

Để chạy thực nghiệm hệ thống ta sử dụng Tool Real-time Window Target trong Matlab, nhằm thu thập dữ liệu và điều khiển thời gian thực cho các thuật toán điều khiển đã xây dựng ở chương trước.

Các chương trình được chạy thực nghiệm được thực hiện trục tiếp từ Simulink của Matlab. Bộ thu thập dữ liệu từ các encoder và điều chế xung PWM được cho phần cứng con lắc được mô tả như hình (4-1). Thời gian lấy mẫu cho thực nghiệm 0.01s.

Hình 4.1 Sơ đồ thu thập dữ liệu và điều khiển hệ con lắc

48 Kết quả thực nghiệm

Bộ điều khiển Swing up – PD

Bộ điều khiển được thực hiện bằng phương pháp thử và sai với các thông số PD:

kp1=350, kd1=18, kp2=60, kd2 = 7, thụng số swing-up: um = 9, à = 2.4

Hình 4.2 Kết quả mô phỏng điều khiển Swing up – PID ổn định điểm cân bằng

49

Điều khiển tay máy bám theo tín hiệu sin và có nhiễu tác động hay thay đổi thông số hệ thống

Hình 4.3 Kết quả thực nghiệm điều khiển PID bám tín hiệu sint có nhiễu

50

Hình (4-2) cho thấy bộ điều khiển Swing-up đã thực hiện đưa cao lắc từ vị trí cân bằng dưới lên vị trí cân bằng trên trong thời gian 6 giây. Do bộ chuyển mạch chưa tính đầy đủ các thông số như vận tốc khi chuyển mạch, nên khi chuyển từ bộ điều khiển Swing-up sang bộ điều khiển PID chưa được tốt, xuất hiện vấn đề dao động, tín hiệu điều khiển chattering khi đó. Sau 20 giây hệ thống mới xác lập, nhưng sai số xác lập của tay máy lớn vì do độ phân giải của encoder cho tay máy thấp.

Hình (4-3) thể hiện bộ điều khiển PD thực hiện điều khiển tay máy bám theo tín hiệu 𝑟𝑒𝑓 = sin𝑡 (𝑟𝑎𝑑), tay máy bám theo tín hiệu chưa tốt; Do các thông số PD được tính toán và thử sai đạt kết quả tốt điểm làm việc trong lân cận điểm cân bằng, nên tín hiệu vào có tần số lớn tay máy không thể bám theo được, nếu xảy ra biên độ nhiễu lớn, hệ thống dể mất ổn định.

Bộ điều khiển thích nghi gián tiếp

Hình 4.4 Bộ điều khiển thích nghi ước lượng thông số mô hình trục tuyến Ở phần này ta tiến hành thực nghiệm bộ điều khiển thích nghi dựa trên tuyến tính hóa hồi tiếp và ước lượng F(q) và G(q) của mô hình trực tuyến

51

Các thông sô học của mạng nơ-ron được điều chỉnh thử và sai đến khi đạt được kết quả ổn định chấp nhận được

Hình 4.5 Kết quả đáp ứng tay máy IDA ổn định tại điểm cân bằng

Hình 4.6 Kết quả đáp ứng con lắc khi IDA ổn định tại điểm cân bằng

52

Hình 4.7 Tín hiệu điều khiển IDA hệ ổn định tại điểm cân bằng

Hình 4.8 Kết quả ước lượng F(q) và norm1 trọng số mạng

53

Hình 4.9 Kết quả ước lượng G(q) và norm1 trọng số mạng

Sau quá trình thí nghiệm ta chọn được các hệ số cho hệ thống k1 = 2, k2 = 25, k3=75, Kf = -0.85, Kg = -0.65, kwf = 0.45, kwg = 0.5 số lớp ẩn cho các mạng là 10

Với cấu trúc mạng đã thiết kế và hệ số học được điều chỉnh, theo hình (4-7) và (4-8) trong 20 giây đầu ta các bộ nơ-ron ước lượng chưa được giá trị đúng của hệ thống.

Sau đó, các giá trị được ước lượng xấp xỉ gần đúng, các trọng số mang và ngõ ra của mạng dần hội tụ đến giá trị cho hệ thống ổn định trong khoảng 8s. Tại các thời điểm 28s, 52s, 87s ta tác động nhiễu vào hệ thống, ngõ ra hệ thống bị tác động, mạng nơ- ron đã đáp ứng tốt vai trò và điều chỉnh tín hiệu điều khiển đáp ứng sự thay đổi này và làm cho hệ thống ổn định.

54

Khi tăng trọng số học của mạng lớn, các giá trị ngõ ra mạng và trọng số mạng thay đổi nhanh nhưng làm cho hệ thống bị chattering lớn thậm chí hệ nhanh mất ổn định.

Với trọng số học nhỏ, hệ thống hội tụ chậm và đáp ứng của hệ không được tốt, tuy nhiên đảm bảo hệ thống ổn định. Để đáp ứng được hệ thống ổn định ta chọn hệ số học phù hợp với cấu trúc và thông số của hệ thống. Tuy nhiên, trong cấu trúc này số lớp ẩn phải nhỏ nhất là 8 để đảm bảo tính ổn định

Với các thông số bộ điều khiển và hệ số học đã được chọn trong thực nghiệm trước tiến hành thực nghiệm với tín hiêu vào là xung vuông biên độ 1(rad), tần số góc 0.2 (rad/s).

Hình 4.10 Kết quả đáp ứng thực nghiệm IDA tay máy với ngõ vào xung vuông

Hình 4.11 Kết quả đáp ứng vị trí con lắc với ngõ vào xung vuông

55

Hình 4.12 Tín hiệu điều khiển thích nghi với ngõ vào xung vuông

Hình 4.13 Ngõ ra xấp xỉ thích nghi của hàm F và G với tín hiệu vào xung

56

Hình 4.14 Kết quả đáp ứng tay máy IAD với ngõ vào tín hiệu sin

Hình 4.15 Kết quả đáp ứng vị trí con lắc với ngõ vào tín hiệu sin

57

Hình 4.16 Tín hiệu điều khiển IAD với ngõ vào sin

Hình 4.17 Ngõ ra xấp xỉ thích nghi IAD hàm F và G với tín hiệu vào sin

58

Kết quả thực nghiệm chứng tỏ, với bộ điều khiển được thiết kế và các thông số được chọn như trước, đáp ứng ngõ ra tay máy bám theo tín hiệu vào mong muốn tốt và con lắc được giữ ổn định quanh vị trí 0 (rad). Tuy nhiên theo hình (4-10), các vị trí bám của tay máy không đối xứng ở 2 bên vùng hoạt động dương và âm, các đáp ứng và sự dao động khác nhau. Điều này một phần do hệ thống cơ khí chưa tốt gây mất ổn đinh và khó khăn khi điều chỉnh thông số. Hình (4-11) cho thấy con lắc dao động quanh điểm cân bằng, nhưng các thay đổi đột ngột của con lắc dễ tiến đến sự mất ổn định của hệ thống. Thực vậy, với tín hiệu có tần số lớn hơn 0.8 (rad/s), đáp ứng hệ thống không đảm bảo được tính ổn định. Điều này là do đặc điểm của bộ điều khiển ảnh hưởng bởi đạo hàm bậc 2 tín hiệu vào phải là hàm trơn và liên tục.

Với tín hiệu vào là hình sin như hình (4-14) (4-15), khi ta cho tần số ngõ vào mong muốn thấp, hệ thống đáp ứng tốt, khi tần số tín hiệu vào đến 2.5 (rad/s) hệ thống rất nhanh mất ổn định. Do đó với bộ điều khiển này chỉ đáp ứng với tần số ngõ vào nhỏ hơn 2,5(rad/s), khi đó con lắc được giữ ổn định quanh vị trí cân bằng với sai số nhỏ và tay máy bám theo tín hiệu mong muốn tốt.

Tính thích nghi của các mạng nơ-ron xấp xỉ tốt các giá trị hàm F và G của hệ thống với tín hiệu vào thay đổi. Hệ thống được giữ ổn định dù ta thay đổi nhỏ thông số hệ thống hay có nhiễu. Tuy nhiên, khi thông số hệ thống có sự thay đổi lớn hệ thống không đảm bảo được tín ổn định. Để hệ thống vẫn giữ tính ổn định khi thông số mô hình thay đổi nhiều ta phải thay đổi hệ số học và các hệ số K trong bộ điều khiển cho phù hợp. Điều này chứng tỏ tính thi nghi của hệ thống thiết kế chưa cao, cần phải tìm luật thích nghi tốt hơn.

Bộ điều khiển thích nghi dạng trực tiếp

Phần này trình bày phần thực nghiệm cho bộ điều khiển thích nghi dùng mạng nơ- ron xấp xỉ tín hiệu điều khiển u cho hệ thống như đã thiết kế mô phỏng. Các thông số bộ điều khiển được chọn trong thực nghiệm cũng được tính toán và thử sai như sau k1 = 3.2, k2 = 25, k3 = 13, mạng nơ-ron có 10 lớp ẩn, không cập nhật trọng số ngõ vào, chỉ cập nhật trọng số ngõ ra hệ số học Kf= -0.4, Kw = 0.5

59

Hình 4.18 Sơ đồ điều khiển Real-time cho điều khiển thích nghi trục tiếp

Hình 4.19 Đáp ứng tay máy ổn định tại vị trí cân bằng

Hình 4.20 Đáp ứng con lắc điều khiển ổn định tại vị trí cân bằng

60

Hình 4.21 Tín hiệu điều khiển ổn định tại vị trí cân bằng u

Hình 4.22 Ngõ ra xấp xỉ uce và trọng số mạng nơ-ron điều khiển ổn định

61

Hình 4.23 Đáp ứng tay máy bám theo tín hiệu sin

Hình 4.24 Đáp ứng con lắc bám theo theo tín hiệu sin

Hình 4.25 Tín hiệu điều khiển bám theo tín hiệu sin u

62

Hình 4.26 Ngõ ra xấp xỉ uce điều khiển bám tín hiệu sin

Hình 4.27 Đáp ứng tay máy bám theo tín hiệu xung vuông

Hình 4.28 Đáp ứng con lắc bám theo theo tín hiệu xung vuông

63

Hình 4.29 Tín hiệu điều khiển bám theo tín hiệu xung vuông

Hình 4.30 Ngõ ra xấp xỉ uce điều khiển bám tín hiệu xung vuông

Khi thực nghiệm bộ điều khiển thích nghi dạng trực tiếp, các thông số được chọn giữ hệ thống ổn định tại điểm cân bằng tốt. Tuy nhiên hệ thống có dao động do chưa tìm đúng bộ thông số điều khiển như hình (4-19) và (4-20).

Khi ta cho tín hiệu vào mong muốn là tín hiệu sin, tay máy bám vào theo tín hiệu vào tốt, con lắc giữ ổn định quanh vị trí cân bằng với sai số nhỏ (hình 4-23, 4-24). Trong quá trình hệ thống vẫn giữ ổn định dù có thay đổi nhỏ thông sô hay tác động nhiễu.

64

Đối với tín hiệu vào là xung vuông hệ thống cũng đáp ứng tốt nhưng dao động xác lập lớn

Đánh giá kết quả

Qua thực nghiệm chứng tỏ, luật điều khiển thích nghi được thiết kế ở hai trường hợp cho hệ thống đáp ứng tốt trong toàn vùng làm việc. Trong khi bộ điều khiển PID chỉ đáp ứng quanh lận điểm làm việc được thiết kế. Hơn nữa, bộ điều khiển thích nghi với mạng nơ-ron xấp xỉ hàm F, G của hệ thống trực tuyến như thiết kế đã đảm bảo tính ổn định của hệ thống khi có nhiễu tác động và thông số mô hình thay đổi. Đáp ứng hệ thống điều khiển bám theo tín hiệu vào mong muốn và ổn định.

Phương pháp điều khiển đề ra đã cho thấy khi không biết chính xác thông số mô hình ta vẫn điều khiển ổn định được hệ thống. Tuy nhiên, hạn chế của phương pháp điều khiển thích nghi gián tiếp là phải biết cấu trúc mô hình. Ở phương pháp điều khiển thích nghi trực tiếp ta không cần biết cấu trúc mô hình, nhưng đáp ứng điều khiển khó xác lập, bị dao động.

Vấn đề chọn lựa cấu trúc, thông số mạng nơ-ron cần được xem xét thêm cho tính đặc tính của hệ thống. Do bộ điều khiển chưa thiết kế để đảm bảo tính bền vững nên khi việc ước lượng trực tuyến có sai số lớn làm hệ thống mất ổn định. Các hệ số PID chưa được thiết kế thích nghi để phù hợp khi thông số mô hình thay đổi lớn. Hơn nữa chất lượng điều khiển còn sai số lớn do phần cơ khí và bộ điều khiển chưa được thiết kế tối ưu.

65

KẾT LUẬN VÀ KIẾN NGHỊ

Luận văn cao học này tập trung khai thác các giải thuật thích nghi trực tiếp và thích nghi gián tiếp với PID bám theo tín hiệu đặt cho hệ phi tuyến dưới bậc. Trên cơ sở điều khiển hồi tiếp tiếp tuyến tính hóa cho hệ dưới bậc với thuật toán thích nghi liên tục và ước lượng tham số mô hình trực tuyến. Các thuật toán áp dụng cho hệ dưới bậc điển hình là mô hình con lắc ngược quay.

Các nội dung được thực hiện trên mô phỏng và thực nghiệm với phần mềm Matlab cho kết quả đạt yêu cầu.

1. Các nội dung đã được thực hiện trong luận văn

- Mô hình hóa đối tượng bằng phương pháp Euler-Lagrange - Xây dựng mô hình cơ khí của hệ thống

- Thực bộ điều khiển Swing-up đưa con lắc từ vị trí cân bằng dưới lên điểm cân bằng trên, ổn định con lắc tại điểm cân bằng trên và tay máy bám theo tín hiệu mong muốn với thuật toán PD.

- Thực hiện thuật toán điều khiển thích nghi gián tiếp và thích nghi trực tiếp cho hệ thống, đáp ứng ngõ ra tay máy bám theo tín hiệu mong muốn.

- Có đánh giá kết quả thực hiện ở mỗi thí nghiệm

Tuy nhiên ngoài các kết quả trên, luận văn còn nhiều vấn đề cần thực hiện tiếp theo như sau

2. Các vấn đề cần khắc phục

▪ Các thuật toán khi áp dụng vào mô hình thực khó khăn cho việc đánh giá vì phần cơ khí chưa tốt. Do đó cần cải tiến mô hình cơ khí, thay đổi encoder với độ phân giải tốt hơn để giảm thời gian lấy mẫu nhằm thực hiện tốt thuật toán đã thiết kế.

66

▪ Chưa ước lượng các hệ số PID trong bộ độ khiển, trong thực tế khi thông số mô hình thay đổi vượt quá ngưỡng đã thiết kế trong một phạm vi, hệ thống dễ mất ổn định phải chỉnh lại các thông số này mới đạt chất lượng mong muốn.

▪ Chưa ước lượng được sai số xấp xỉ của mạng neuron để điều chỉnh tự động cho tín hiệu điều khiển trượt bù sai số.

3. Hướng phát triển trong thời gian sau

- Phát triển giải thuật điều khiển vùng chết trong mô hình do động cơ.

- Phát triển thêm thuật toán ước lượng các thông số bám PD và ước lượng sai số xấp xỉ của mạng neuron.

- Thực hiện việc chuyển mạch mềm giữa bộ điều khiể n Swing-up và bộ điều khiển bám thích nghi.

- Phát triển thuật toán thích nghi tối ưu cho điều khiển bám

67

Một phần của tài liệu Thuật toán PID thích nghi dùng mạng nơ ron điều khiển hệ con lắc ngược đơn (luận văn thạc sĩ) (Trang 60 - 80)

Tải bản đầy đủ (PDF)

(83 trang)