CHƯƠNG 3- NỨT DO MÔI TRƯỜNG ĂN MÒN VÀ CÓ ỨNG SUẤT ÁP VÀO
3.4. Các cơ chế lan truyền SCC
3.4.4. Mô hình gãy cơ học
• Mô hình rạn nứt hoặc mô hình giòn hóa lớp màng (tarnish rupture model or brittle film model)
Các mô hình rạn nứt hoặc đôi khi được gọi là mô hình giòn hóa lớp màng có liên quan đến SCC giữa các hạt của thép không gỉ austenitic. Mô hình này cũng có thể được áp dụng cho SCC của thép không gỉ ở môi trường nước có nhiệt độ cao hoặc trong các dung dịch polythionate. Trong mô hình này, lớp màng bề mặt bị giòn hoặc yếu cơ học do môi trường gây ra. Lớp màng này phát triển ưu tiên dọc theo các ranh giới hạt, như trong hình 3.9. Trong vật liệu chịu ứng suất, lớp màng trải qua gãy giòn ở một độ sâu tới hạn, và đi vào bề mặt, để lộ kim loại trần và dẫn đến hòa tan cho đến khi kim loại tự tái tạo lớp màng và lớp màng giòn được hình thành một lần nữa. Quá trình này lặp lại dẫn đến vết nứt được lan truyền liên tục. Sự khác biệt giữa mô hình này và mô hình vỡ lớp màng là mô hình vỡ lớp màng liên quan đến cáclớp màng thụ động mỏng (~ 50 Å) và tốc độ tái tạo đóng một vai trò quan trọng trong quá trình lan truyền vết nứt. Tuy nhiên, sự lan truyền vết nứt bởi mô hình rạn nứt với lớp màng không bảo vệ dày (~ 1000 Å hoặc lớn hơn) bị hạn chế bởi sự vận chuyển các ion trong dung dịch [1].
Hình 3.9. Sơ đồ của mô hình vỡ lớp màng cho thấy sự hình thành của lớp màng giòn dọc theo biên giới hạt và sự vỡ của lớp màng giòn do ứng suất dẫn đến sự
khởi tạo và lan truyền vết nứt [13]
31
• Mô hình giòn hóa
Theo các cơ chế gãy cơ học, vết nứt SCC lan truyền theo cách giòn hóa trong hầu hết các trường hợp, và do đó cách tiếp cận của Griffith đối với sự gãy giòn có thể có liên quan. Vì vậy, ứng suất gãy cần thiết để gây ra sự lan truyền của một vết nứt hình elip theo cách giòn hóa có thể được ước tính từ phương trình 3.3 [1]:
𝜎𝑐 = (2𝐸𝛾𝑠
𝜋𝐶 )
1
2 (3.3) Trong đó: E là mô đun Young và 𝛾𝑠 là năng lượng bề mặt.
Do đó, bất kỳ quá trình nào làm giảm 𝛾𝑠 sẽ làm giảm ứng suất cần thiết cho sự gãy giòn. 𝛾𝑠có thể bị giảm nếu một số loại chất tan được hấp phụ ở bề mặt gãy.
Điều này thường diễn ra trong quá trình giòn hóa hydro của thép. Nhưng nếu biến dạng dẻo liên quan đến gãy, thì theo Orowan, năng lượng bề mặt sẽ được sửa đổi để tính toán công được thực hiện trong quá trình biến dạng dẻo. Do đó 𝛾𝑝 (công biến dạng dẻo) được thêm vào phần 𝛾𝑠. Ngoài ra hydro phản ứng với biến vị, các lỗ trống hoặc khoảng trống lớn hơn có thể tạo thành hydrua và ảnh hưởng đến gãy. Những lớp màng giòn này có thể được hình thành ở bề mặt tiếp xúc của kim loại và chỗ vỡ, dẫn đến sự hòa tan tích cực của kim loại và lan truyền vết nứt [1].
• Mô hình hấp phụ chọn lọc
Mô hình hấp phụ chọn lọc giả định rằng các loại chất tan cụ thể bị hấp phụ ở bề mặt kim loại, làm giảm năng lượng bề mặt 𝛾𝑠 trong phương trình Griffith hoặc Petch-Stroh, dẫn đến giảm ứng suất cần thiết để gây gãy giòn. Theo mô hình này, đặc trưng của các loại chất tan cũng như sự phụ thuộc điện hóa của SCC có thể được giải thích là các loại ăn mòn có chọn lọc được hấp phụ ở bề mặt kim loại và tương tác với các liên kết biến dạng ở đầu nứt, làm giảm độ bền liên kết như được hiển thị trong hình 3.10 [1].
32
Hình 3.10. Sơ đồ biểu diễn mô hình hấp phụ [9]
Sự hấp phụ thường xảy ra tại các biến vị hoặc các khuyết tật di động tại đầu vết nứt. Mô hình này liên quan đến gãy giòn và do đó phù hợp với sự phân tách giống như gãy xuất phát từ các hạt của thép không gỉ austenitic. Tuy nhiên, có một số tranh cãi liên quan đến lý thuyết này. Một trong những tranh cãi chính là sự lan truyền vết nứt được chi phối bởi tốc độ vận chuyển các ion gây hại đến đầu vết nứt, và các nghiên cứu đã chỉ ra rằng một vết nứt nhọn không thể duy trì ổn định trong một hợp kim mềm FCC ở vận tốc nứt thấp [1].
Fuller, Lawn và Thompson xem xét các mô hình nguyên tử đối với sự hấp phụ gây ra gãy. Trong mô hình này, các nguyên tử được nối với nhau bằng các liên kết ngang của hằng số lò xo (β) và liên kết dọc của hằng số lò xo (α). Mô hình này được thể hiện trong hình 3.11. Khi một chất tan hóa học (phân tử A2 trong hình 3.11) được hấp phụ ở đầu vết nứt, nó tạo thành hai liên kết AB và sự hỏng xảy ra do vỡ liên kết bị suy yếu AA [1].
33
Hình 3.11. Sơ đồ vỡ hóa học gây ra rạn nứt liên kết [9]
• Mô hình giòn hóa hydro
Theo mô hình này, SCC được tạo bởi sự tăng trưởng vết nứt chậm do các nguồn hydro bên ngoài. Có một số mô hình giòn hóa hydro được đề xuất cho các hệ thống hợp kim / môi trường khác nhau:
1. Mô hình biến đổi thành thép không gỉ martensitic 2. Mô hình Hydrua
3. Tương tác với biến vị
Trong mô hình biến đổi thành thép không gỉ martensitic, sự hình thành của martensitic có thể liên quan đến sự gãy xuất phát từ các hạt của thép không gỉ austenitic. Quan sát martensitic trên bề mặt gãy SCC của thép không gỉ 304L austenitic trong nhiều trường hợp thấy được vai trò của martensite trong sự nhạy cảm SCC của loại thép này. Giả định rằng việc hydro xâm nhập vào mạng lưới kim loại đã thúc đẩy sự biến đổi của austenite siêu bền thành martensitic [1].
Trong các mô hình hydrua, hydrua được coi là đóng vai trò quan trọng trong SCC của một số hợp kim không màu như hợp kim titan hoặc đóng vai trò là rào cản đối với chuyển động biến vị và do đó thúc đẩy gãy giòn của mạng lưới kim loại hoặc cung cấp đường dẫn cho gãy giòn thông qua các pha hydrua hình thành trong các hợp kim này.
Biến vị đóng một vai trò quan trọng trong quá trình giòn hóa hydro. Trong mô hình này, sự giòn hóa, được tạo ra bởi hydro, tương tác với số pin và các biến vị, dẫn đến gãy.
34
Sự giòn hóa hydro xảy ra trong kim loại do sự hấp phụ hydro trong quá trình phản ứng trên bề mặt kim loại. Các phản ứng này là:
H2O + 2M = MH + MOH (3.1)
H2O + MH = MOH + H2 (3.2)
Những phản ứng này chỉ có thể xảy ra tại các vị trí tích cực [1].