Hướng phát triển của luận văn trong tương lai

Một phần của tài liệu Nghiên cứu mô phỏng số thiết bị microfluidic tập trung DNA (Trang 42 - 49)

Tác giả tiếp tục phát triển các mô hình đa kênh dẫn microfluidic kết hợp sử dụng hệ các ống dẫn nano thay cho màng lựa chọn ion để gia tăng và điều khiển sự tập trung nồng độ phân tử DNA nói riêng và các phân tử/ tế bào sinh học nói chung. Sử dụng kết hợp phương pháp Lagrangian và phương pháp biên nhúng để mô hình hóa các phân tử sinh học, sự biến dạng và chuyển động của chúng trong hệ điện hóa.

31 TÀI LIỆU THAM KHẢO

[1] Jongmin Kim, Sarah Sahloul, Ajymurat Orozaliev, Vu Q. Do, Van Sang Pham, Diogo Martins, Xi Wei, Rastislav Levicky, and Yong-Ak Song,

“Microfluidic Electrokinetic Preconcentration Chips: Enhancing the detection of nucleic acids and exosomes,” IEEE Nanotechnol. Mag., vol. 14, no. 2, pp. 18–34, Apr. 2020.

[2] Y. Liu, H. Wang, J. Huang, J. Yang, B. Liu, and P. Yang, “Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum,”

Anal. Chim. Acta, vol. 650, no. 1, pp. 77–82, 2009.

[3] M. Toner and D. Irimia, “Blood-on-a-Chip,” Annu. Rev. Biomed. Eng., vol.

7, no. 1, pp. 77–103, 2005.

[4] J. A. Fuhrman, D. E. Comeau, Å. Hagstrửm, and A. M. Chan, “Extraction from Natural Planktonic Microorganisms of DNA Suitable for Molecular Biological Studies,” Appl. Environ. Microbiol., vol. 54, no. 6, pp. 1426–

1429, 1988.

[5] M. T. Suzuki, C. M. Preston, O. Béjà, J. R. De La Torre, G. F. Steward, and E. F. DeLong, “Phylogenetic screening of ribosomal RNA gene-containing clones in Bacterial Artificial Chromosome (BAC) libraries from different depths in Monterey Bay,” Microb. Ecol., vol. 48, no. 4, pp. 473–488, 2004.

[6] P. Van Sang, “An Immersed Boundary Method for Simulation of Moving Object in Fluid Flow,” J. Sci. Technol., vol. 127, no. 1, pp. 40–44, 2018.

[7] Q. V. Do, V. B. Nguyen, P. K. Nguyen, and V. S. Pham, “An Immersed Boundary Method OpenFOAM Solver for Structure – Two-phase Flow Interaction,” J. Sci. Technol., vol. 138, pp. 028–032, 2019.

[8] V. B. Nguyen, Q. V. Do, and V. S. Pham, “An OpenFOAM solver for multiphase and turbulent flow,” Phys. Fluids, vol. 32, no. 4, p. 043303, 2020.

[9] B. J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge, 2010.

[10] Y. C. Wang, A. L. Stevens, and J. Han, “Million-fold preconcentration of proteins and peptides by nanofluidic filter,” Anal. Chem., vol. 77, no. 14, pp.

4293–4299, 2005.

[11] D. Martins, X. Wei, R. Levicky, and Y. A. Song, “Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization,” Anal.

Chem., vol. 88, no. 7, pp. 3539–3547, 2016.

[12] V. S. Pham, “Nonlinear Electrokinetic Flow Near Permselective Membrane,” National University of Singapore, 2012.

[13] F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics - An Advanced Introduction with OpenFOAM and Matlab, vol. 113. 2016.

[14] C. Geuzaine and J. F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Methods Eng., vol. 79, no. 11, pp. 1309–1331, 2009.

[15] S. R. Mathur and J. Y. Murthy, “A multigrid method for the Poisson–

32 Nernst–Planck equations,” Int. J. Heat Mass Transf., vol. 52, no. 17–18, pp.

4031–4039, 2009.

[16] H. Daiguji, P. Yang, and A. Majumdar, “Ion Transport in Nanofluidic Channels,” Nano Lett., vol. 4, no. 1, pp. 137–142, 2004.

[17] S. J. Kim, Y. A. Song, and J. Han, “Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications,” Chem. Soc. Rev., vol. 39, no. 3, pp. 912–922, 2010.

[18] I. Rubinstein and B. Zaltzman, “Electro-osmotically induced convection at a permselective membrane,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., vol. 62, no. 2, pp. 2238–2251, 2000.

[19] S. M. Rubinstein, G. Manukyan, A. Staicu, I. Rubinstein, B. Zaltzman, R.

G. H. Lammertink, F. Mugele, and M. Wessling, “Direct observation of a nonequilibrium electro-osmotic instability,” Phys. Rev. Lett., vol. 101, no.

23, pp. 1–4, 2008.

[20] S. J. Kim, Y. C. Wang, J. H. Lee, H. Jang, and J. Han, “Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel,”

Am. Phys. Soc., vol. 99, no. 4, p. 044501, 2007.

[21] H. Song, Y. Wang, C. Garson, and Kapil Pant, “Concurrent DNA preconcentration and separation in bipolar electrode-based microfluidic device,” Anal. Methods, vol. 7, no. 4, pp. 1273–1279, Jul. 2015.

[22] V. B. Nguyen and V. S. Pham, “Study and modeling DNA-preconcentration microfluidic device,” J. Sci. Technol., vol. 143, pp. 001-006, 2020.

33 PHỤ LỤC

A1. Các bài báo đã công bố

[1] V. B. Nguyen and V. S. Pham, “Study and modeling DNA-preconcentration microfluidic device,” J. Sci. Technol., vol. 143, pp. 001-006, 2020.

[2] Q. V. Do, V. B. Nguyen, P. K. Nguyen, and V. S. Pham, “An Immersed Boundary Method OpenFOAM Solver for Structure – Two-phase Flow Interaction,” J. Sci. Technol., vol. 138, pp. 028–032, 2019.

[3] V. B. Nguyen, Q. V. Do, and V. S. Pham, “An OpenFOAM solver for multiphase and turbulent flow,” Phys. Fluids, vol. 32, no. 4, p. 043303, 2020.

[4] Viet Bac Nguyen and Van Sang Pham, Develop immersed boundary method OpenFOAM solver for multiphase and turbulent flow, The 30th International Symposium on Transport Phenomena conference, 2019.

[5] Pham Van Sang and Nguyen Viet Bac "A Study on Ions Transports Through Charged Nanopores" International Conference on Fluid Machinery and Automation Systems - ICFMAS2018, Hanoi, Vietnam, 2018.

A2. Tham số điều kiện biên

// Khai báo thông tin về tên lưới, tên các biên, và thuộc tính vật lí của các biên.

Grid {

filename = StudyCases/JST2020/mesh/flatMem_5_2_2.msh;

inlet = [inlet]; inlet dummy = [inlet dummy];

outlet = [outlet]; outlet dummy = [outlet dummy];

membrane = [membrane1,membrane2]; membrane dummy = [membrane dummy];

electrode = [electrode]; electrode dummy = [electrode dummy];

symmetry = [symmetry]; symmetry dummy = [symmetry dummy];

wall = [wallLeft,wallRight]; wall dummy = [wallRight dummy];

empty = [empty];

periodic = [periodic]; periodic shadow = [periodicshadow];

}

// Khai báo giá trị các đại lượng không thứ nguyên.

Parameter {

faraday constant = 96485.3415;

length scale = 20E-6;// in meter concentration scale= 10;//mol/m3 velocity scale = 1;//m/sec

temp = 300.0;

wall surface charge = 0.0065;//C/m2 average diffusivity = 1E-9;

34 charge number = 1;

stokes critical = -10;

dynamic viscosity=8.9E-4;//pas.sec g = [0.0,0.0,-9.8];

}

// Khai báo giá trị khởi tạo, thuộc tính của các biến Variable_1

{

name = Na+;

type = ion;

unit = mol/m3;

diffusivity = 1.33E-9;

chargenumber = 1;

initial value = 1;

boundary_1(name = inlet; value = 1;type = fixedvalue;);

boundary_2(name = outlet; value = 1;type = fixedvalue;);

boundary_3(name = wallLeft; value = 0;type = fixedionicflux;);

boundary_4(name = wallRight; value = 0;type = fixedionicflux;);

boundary_5(name = membrane1; value = 1.5;type = fixedvalue;);

boundary_6(name = membrane2; value = 1.5;type = fixedvalue;);

}

Variable_2 {

name = Cl-;

type = ion;

unit = mol/m3;

diffusivity = 2.03E-9;

chargenumber = -1;

initial value = 1;

boundary_1(name = inlet; value = 1;type = fixedvalue;);

boundary_2(name = outlet; value = 1;type = fixedvalue;);

boundary_3(name = wallLeft; value = 0;type = fixedionicflux;);

boundary_4(name = wallRight; value = 0;type = fixedionicflux;);

boundary_5(name = membrane1; value = 0;type = fixedionicflux;);

boundary_6(name = membrane2; value = 0;type = fixedionicflux;);

}

Variable_3 {

name = Phi;

type = potential;

35 unit = Vol;

initial value = 0;

boundary_1(name = inlet; value = 35;type = fixedvalue;);

boundary_2(name = outlet; value = 0;type = fixedvalue;);

boundary_3(name = wallLeft; value = 0;type = fixedgradient;);

boundary_4(name = wallRight; value = 0;type = fixedgradient;);

boundary_5(name = membrane1; value = 0;type = fixedvalue;);

boundary_6(name = membrane2; value = 0;type = fixedvalue;);

}

Variable_4 {

name = U;

type = velocity;

unit = m/s;

initial value = 0;

boundary_1(name = inlet; value = 0;type = fixedgradient;);

boundary_2(name = outlet; value = 0;type = fixedgradient;);

boundary_3(name = wallLeft; value = 0;type = fixedvalue;);

boundary_4(name = wallRight; value = 0;type = fixedvalue;);

boundary_5(name = membrane1; value = 0;type = fixedvalue;);

boundary_6(name = membrane2; value = 0;type = fixedvalue;);

}

Variable_5 {

name = V;

type = velocity;

unit = m/s;

initial value = 0;

boundary_1(name = inlet; value = 0;type = fixedgradient;);

boundary_2(name = outlet; value = 0;type = fixedgradient;);

boundary_3(name = wallLeft; value = 0;type = fixedvalue;);

boundary_4(name = wallRight; value = 0;type = fixedvalue;);

boundary_5(name = membrane1; value = 0;type = fixedvalue;);

boundary_6(name = membrane2; value = 0;type = fixedvalue;);

}

Variable_6 {

name = Pre;

type = pressure;

36 unit = N/m2;

initial value = 0;

boundary_1(name = inlet; value = 0;type = fixedgradient;);

boundary_2(name = outlet; value = 0;type = fixedvalue;);

boundary_3(name = wallLeft; value = 0;type = fixedgradient;);

boundary_4(name = wallRight; value = 0;type = fixedgradient;);

boundary_5(name = membrane1; value = 0;type = fixedgradient;);

boundary_6(name = membrane2; value = 0;type = fixedgradient;);

}

Variable_7 {

name = DNA;

type = dna;

unit = mol/m3;

diffusivity = 0.0454E-9;

chargenumber = -50;

initial value = 0.1;

boundary_1(name = inlet; value = 0;type = fixedgradient;);

boundary_2(name = outlet; value = 0;type = fixedgradient;);

boundary_3(name = wallLeft; value = 0;type = fixedvalue;);

boundary_4(name = wallRight; value = 0;type = fixedvalue;);

boundary_5(name = membrane1; value = 0;type = fixedvalue;);

boundary_6(name = membrane2; value = 0;type = fixedvalue;);

}

Equation {

name = PNPNS;

make staggered grid = 0;

variables = [Na+,Cl-,Phi,U,V,Pre];

dynamic boundary condition(variable = Phi;type =

potential/*current*/;boundary = [inlet];first value = 35;last value = 40; increment = 1;);

time(timeend = 0.15; timestep = 0.0001;);

time dependent = yes;

dimensionless output = yes;

inlet boundary name = inlet;

outlet boundary name = outlet;

} Solver {

Một phần của tài liệu Nghiên cứu mô phỏng số thiết bị microfluidic tập trung DNA (Trang 42 - 49)

Tải bản đầy đủ (PDF)

(49 trang)