TAI LIEU THAM KHAO

Một phần của tài liệu Khóa luận tốt nghiệp Hệ thống thông tin: Xây dựng hệ thống end-to-end chatbot sử dụng mô hình học sâu (Trang 80 - 84)

D. Adiwardana, M.-T. Luong, D. R. So, J. Hall, N. Fiedel, R. Thoppilan, Z. Yang, A. Kulshreshtha, G. Nemade, Y. Lu and Q. Le, "Towards a human-like open-domain chatbot," arXiv preprint arXiv:2001.09977, 2020.

D. Bahdanau, K. Cho and Y. Bengio, "Neural machine translation by jointly learning to align and translate," CoRR, vol. abs/1409.0473, 2014.

K. Cho, B. van Merri{\"e}nboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio, "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," in Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.

A. Graves, G. Wayne and I. Danihelka, "Neural Turing Machines," arXiv preprint arXiv: 1410.5401, 2014.

A. Holtzman, J. Buys, L. Du, M. Forbes and Y. Choi, "The curious case of neural text degeneration,” in International Conference on Learning Representations, 2020.

M. Huang, X. Zhu and J. Gao, "Challenges in building intelligent open-domain dialog systems," ACM Transactions on Information Systems (TOIS), vol. 38,

pp. 1-32, 2020.

Y. Kim, J. Bang, J. Choi, S. Ryu, S. Koo and G. G. Lee, "Acquisition and use

of long-term memory for personalized dialog systems," International Workshop on Multimodal Analyses Enabling Artificial Agents in Human- Machine Interaction, pp. 78-87, 2014.

J. Li, M. Galley, C. Brockett, J. Gao and B. Dolan, "A diversity-promoting objective function for neural conversation models," NAACL, pp. 110-119, 2015.

66

[9] J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J. Gao and B. Dolan, "A

persona-based neural conversation model," ACL, pp. 994-1003, 2016.

[10] J. Li, W. Monroe and D. Jurafsky, "A simple, fast diverse decoding algorithm

for neural generation," arXiv preprint arXiv: 1611.08562, 2016.

[11]J. Li and D. Jurafsky, "Neural net models for open-domain discourse

coherence,” arXiv preprint arXiv: 1606.01545, 2016.

[12] M.-T. Luong, H. Pham and C. D. Manning, "Effective Approaches to

Attention-based Neural Machine Translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 2015.

[13] Q. Qian, M. Huang, H. Zhao, J. Xu and X. Zhu, "Assigning Personality/Profile

to a Chatting Machine for Coherent Conversation Generation," in JCA!, 2018,

pp. 4279-4285.

[14] A. Radford, K. Narasimhan, T. Salimans and I. Sutskever, "Improving

language understanding by generative pre-training," 2018.

[15] M. Rei, "Semi-supervised multitask learning for sequence labeling," arXiv

preprint arXiv: 1704.07156, 2017.

[16] A. Ritter, C. Cherry and W. B. Dolan, "Data-driven response generation in

social media," Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 583--593, 2011.

[17] R. Sennrich, B. Haddow and A. Birch, "Neural machine translation of rare

words with subword units," arXiv preprint arXiv: 1508.07909, 2015.

[18] I. Serban, A. Sordoni, Y. Bengio, A. Courville and J. Pineau, "Building end-to-

end dialogue systems using generative hierarchical neural network models," in Proceedings of the AAAI Conference on Artificial Intelligence, 2016, pp. 3776- 3784.

67

[19]L. Shang, Z. Lu and H. Li, "Neural responding machine for short-text

conversation,” arXiv preprint arXiv: 1503.02364.

[20] C. Tao, S. Gao, M. Shang, W. Wu, D. Zhao and R. Yan, "Get The Point of My

Utterance! Learning Towards Effective Responses with Multi-Head Attention Mechanism," in UCAT, 2018, pp. 4418-4424.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, {.

Kaiser and I. Polosukhin, "Attention is all you need," in Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 2017.

[22] 0. Vinyals and Q. Le, "A neural conversational model," arXiv preprint

arXiv: 1506.05869, 2015.

[23] J. Wang, X. Wang, F. Li, Z. Xu, Z. Wang and B. Wang, "Group linguistic bias

aware neural response generation," in Proceedings of the 9th SIGHAN Workshop on Chinese Language Processing, 2017, pp. 1-10.

[24] Y. Wang, C. Liu, M. Huang and L. Nie, "Learning to ask questions in open-

domain conversational systems with typed decoders," Proceedings of the 56th Annual Meeting of the, pp. 2193-2203, 2018.

[25] T. Wolf, V. Sanh, J. Chaumond and C. Delangue, "Transfertransfo: A transfer

learning approach for neural network based conversational agents," CoRR, vol. abs/1901.08149, 2019.

[26] C. Xing, Y. Wu, W. Wu, Y. Huang and M. Zhou, "Hierarchical recurrent

attention network for response generation," in Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[27] C. Xing, W. Wu, Y. Wu, J. Liu, Y. Huang, M. Zhou and W.-Y. Ma, "Topic

aware neural response generation," in Proceedings of the AAAI Conference on Artificial Intelligence, 2017, pp. 3351-3357.

[28] C. Xu, W. Wu, C. Tao, H. Hu, M. Schuerman and Y. Wang, "Neural response

68

generation with meta-words," in arXiv preprint arXiv: I906.06050, 2019.

[29] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel and

Y. Bengio, "Show, attend and tell: Neural image caption generation with visual attention," in International conference on machine learning, 2015, pp. 2048- 2057.

[30] H. Zhang, Y. Lan, L. Pang, J. Guo and X. Cheng, "Recosa: Detecting the

relevant contexts with self-attention for multi-turn dialogue generation,” in Proceedings of the 57th Annual Meeting of the Association for Computational,

pp. 3721-3730.

[31] S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela and J. Weston,

"Personalizing dialogue agents: I have a dog, do you have pets too?,” arXiv preprint arXiv: 1801.07243, 2018.

[32] W.-N. Zhang, Q. Zhu, Y. Wang, Y. Zhao and T. Liu, "Neural personalized

response generation as domain adaptation," World Wide Web, vol. 22, pp. 1427-1446, 2019.

[33] Y. Zhang, X. Gao, S. Lee, C. Brockett, M. Galley, J. Gao and B. Dolan,

"Consistent dialogue generation with self-supervised feature learning," arXiv preprint arXiv: 1903.05759, 2019.

[34] T. Zhao, R. Zhao and M. Eskenazi, "Learning discourse-level diversity for

neural dialog models using conditional variational autoencoders," in ACL,

2017, pp. 654-664.

[35] H. Zhou, M. Huang, T. Zhang, X. Zhu and B. Liu, "Emotional chatting

machine: Emotional conversation generation with internal and external memory,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[36] L. Zhou, J. Gao, D. Li and H.-Y. Shum, "The design and implementation of

xiaoice, an empathetic social chatbot," Computational Linguistics, vol. 46, pp.

69

Một phần của tài liệu Khóa luận tốt nghiệp Hệ thống thông tin: Xây dựng hệ thống end-to-end chatbot sử dụng mô hình học sâu (Trang 80 - 84)

Tải bản đầy đủ (PDF)

(84 trang)