TAI LIEU THAM KHAO QUOC TE

Một phần của tài liệu Khóa luận tốt nghiệp An toàn thông tin: Phân tích Kết hợp các ứng dụng Android để phát hiện và phân loại ứng dụng độc hại bằng cách sử dụng học sâu (Trang 72 - 78)

[1]

[2]

[3]

[4]

"Mobile Operating System Market Share Worldwide | Statcounter Global Stats," Statcounter, 2023. [Online]. Available: https://gs.statcounter.com/os- market-share/mobile/worldwide. [Accessed 4 2023].

T. Shishkova, "The mobile malware threat landscape in 2022," Kaspersky, 27 2

2023. [Online]. Available: https://securelist.com/mobile-threat-report- 2022/108844/. [Accessed 4 2023].

Z.a.R. K. a. Q. S. a. C. F. Xu, "CDGDroid: Android malware detection based

on deep learning using CFG and DFG," in Formal Methods and Software Engineering: 20th International Conference on Formal Engineering Methods, ICFEM 2018, Gold Coast, QLD, Australia, November 12-16, 2018,

Proceedings 20, 2018.

A.a.L. A. H.a. K. G. a. T. L. a. G. F. a. M. E. Rahali, "Didroid: Android malware classification and characterization using deep image learning,” in

2020 The 10th international conference on communication and network

security, 2020.

[5J T.a.D.N.a. A. K. a. B. T. F. Sun, "Android Malware Detection: Looking

beyond Dalvik Bytecode," in 2021 36th IEEE/ACM International Conference

on Automated Software Engineering Workshops (ASEW), 2021.

[6] A.a.D. A. a. C. K.-K. R. Azmoodeh, "Robust malware detection for internet

of (battlefield) things devices using deep eigenspace learning," JEEE transactions on sustainable computing, vol. 4, no. 1, pp. 88-95, 2018.

[7] L.a.M. B. Nataraj, "SPAM: Signal Processing to Analyze Malware

[Applications Corner]," JEEE Signal Processing Magazine, vol. 33, no. 2, pp. 105-117, 2016.

[8] K.a.U.H.M. a. G. R. Bakour, "A deep camouflage: evaluating android’s anti-

malware systems robustness against hybridization of obfuscation techniques with injection attacks," Arabian Journal for Science and Engineering, vol. 44,

pp. 9333-9347, 2019.

[9J K.a.U.H.M. Bakour, "DeepVisDroid: android malware detection by

hybridizing image-based features with deep learning techniques," Neural Computing and Applications, vol. 33, pp. 11499-11516, 2021.

[10] H. M. a. B. K. Unver, "Android malware detection based on image-based

features and machine learning techniques," SN Applied Sciences, vol. 2, pp. 1-

15, 2020.

[11] F. a. S. A. Mercaldo, "Deep learning for image-based mobile malware

detection," Journal of Computer Virology and Hacking Techniques, vol. 16,

no. 2, pp. 157-171, 2020.

[12]S.a.R.S.a.F.C.a.B.E.a.B.A.a.K.J.a.L.T.Y.a.O.D.a.M.P. Arzt,

"Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps," Acm Sigplan Notices, vol. 49, no. 6, pp. 259-

269, 2014.

[13] F. a. R. S. a. O. X. Wei, "Amandroid: A precise and general inter-component

data flow analysis framework for security vetting of android apps," ACM Transactions on Privacy and Security (TOPS), vol. 21, no. 3, pp. 1-32, 2018.

[14JD.a.P.P.a.P.P.a.R.S.a.C. D. a. L. G. a. O. X. Chaulagain, "Hybrid

analysis of android apps for security vetting using deep learning," in 2020 IEEE Conference on Communications and Network Security (CNS), 2020.

[15] S.a.C. D. a. B. S. Roy, "Static Analysis for Security Vetting of Android

Apps," From Database to Cyber Security: Essays Dedicated to Sushil Jajodia

on the Occasion of His 70th Birthday, pp. 375-404, 2018.

[16] D.S.a.L. B.a. K.G.a.L. A. H.a. G. F. a. M. F. Keyes, "EntropLyzer:

Android Malware Classification and Characterization Using Entropy Analysis

of Dynamic Characteristics," 1n 2027 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS), 2021.

[17] O. A. a. H. A. a. E.-D. E.-S. A. a. I. M. A. Shawky, "Remote sensing image

scene classification using CNN-MLP with data augmentation," Optik, vol. 221,

p. 165356, 2020.

[18] Y.a. Y.Z.a.G. Y.a.C. X. Li, "Droidbot: a lightweight ui-guided test input

generator for android," in 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), 2017.

[19] G.a.D.S. K.a. A.M. a. K. J. a. G. G. a. C. L. Suarez-Tangil, "Droidsieve:

Fast and accurate classification of obfuscated android malware," in Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, 2017.

[21] A. a. L. Y. Naway, "Using deep neural network for Android malware

detection," 2019.

[22] S. K. a. S.-T. G. a. K. S. a. T. K. a. A. M. a. K. J. a. C. L. Dash, "Droidscribe:

Classifying android malware based on runtime behavior," in 2016 IEEE Security and Privacy Workshops (SPW), 2016.

[23] V.a.G. A. a. S. G. Vovk, "Conformal prediction," Algorithmic learning in a

random world, pp. 17-51, 2005.

[24] A. a. R.-F. V. a. C. D. Martin, "CANDYMAN: Classifying Android malware

families by modelling dynamic traces with Markov chains," Engineering Applications of Artificial Intelligence, vol. 74, pp. 121-133, 2018.

[26] M. K.a. Y. S. Y. a. S. S. Alzaylaee, "DL-Droid: Deep learning based android

malware detection using real devices," Computers & Security, vol. 89, p.

101663, 2020.

[27] A. a. M. M.a. M. F. a. M. F. a. M. J. Ferrante, "Extinguishing ransomware-a

hybrid approach to android ransomware detection," in International symposium

on foundations and practice of security, 2017.

[28] A. H. a. K. A. F. Ava. T. L. a. G. A. A. Lashkari, "Toward developing a

systematic approach to generate benchmark android malware datasets and classification," in 2018 International Carnahan Conference on Security

Technology (ICCST), 2018.

[29] L. a. K. A. E. A. a. L. A. H. Taheri, "Extensible android malware detection and

family classification using network-flows and API-calls," in 20/9 International Carnahan Conference on Security Technology (ICCST), 2019.

[30] S. a. D. R. a. C. D. H. Freitas, "Malnet: A large-scale cybersecurity image

database of malicious software," arXiv preprint arXiv:2102.01072, 2021.

[231] Y.-X. a. Z. W.-G. a. W. Z.-P. a. W. L.-F. Ding, "Automaticlly Learning Featurs

Of Android Apps Using CNN," in 20/8 International Conference on Machine Learning and Cybernetics (ICMLC), 2018.

[32] V. a. S.-M. N. a. A.-B. A. Bolón-Canedo, "Feature selection for high-

dimensional data," Progress in Artificial Intelligence, vol. 5, pp. 65-75, 2016.

[33] M. B. a. J. A. a. R. W. R. Kursa, "Boruta--a system for feature selection,"

Fundamenta Informaticae, vol. 101, no. 4, pp. 271-285, 2010.

[34] "Data Science Tips: Feature Selection using Boruta in Python," Predictive

Research Solutions, 2021. [Online]. Available:

https://www.predictiveresearchsolutions.com/post/data-science-tips-feature- selection-using-boruta-in-python. [Accessed 23 05 2023].

[35] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001.

[36] S.a. K. A. F. A. a. F. R. a. A. D. a. G. A. A. Mahdavifar, "Dynamic android

malware category classification using semi-supervised deep learning,” in 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf

on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), 2020.

[37] S. Y. a. S. S. Yerima, "Droidfusion: A novel multilevel classifier fusion

approach for android malware detection," JEEE transactions on cybernetics, vol. 49, no. 2, pp. 453-466, 2018.

[38] N. a. S. K.a.C. T. a. A. B. B. Zakeya, "Probing AndroVul dataset for studies

on Android malware classification," Journal of King Saud University- Computer and Information Sciences, vol. 34, no. 9, pp. 6883-6894, 2022.

[39] N. Baltaci, "Comparison of classification algorithms for mobile malware

detection: market metadata as input source," Middle East Technical University, 2014.

[40] N. a. S.J. a. K. A. K.a. A. K. a. B. T. F. a. K. J. Daoudi, "Dexray: A simple,

yet effective deep learning approach to android malware detection based on image representation of bytecode," in International Workshop on Deployable Machine Learning for Security Defense, 2021.

[41] Y.a.M.R.a. J. R. Li, "A hybrid malicious code detection method based on

deep learning," International Journal of Security and Its Applications, vol. 9,

no. 5, pp. 205-216, 2015.

[42] A. a. C.M. a. C. L. a. L. Y. Narayanan, "Context-aware, adaptive, and scalable

android malware detection through online learning," JEEE Transactions on Emerging Topics in Computational Intelligence, vol. 1, no. 3, pp. 157-175, 2017.

[43] M. a. S. S. C. Gopinath, "A comprehensive survey on deep learning based

malware detection techniques," Computer Science Review, vol. 47, p. 100529, 2023.

[44] A. Gupta, "One Hot Encoding-Method of Feature Engineering, Global Stats,"

2019. [Online]. Available: https://medium.com/analytics-vidhya/one-hot- encoding-method-of-feature-engineering- 1 1cc76c4b627. [Accessed 23 05 2023].

[45] A. Pinkus, "Approximation theory of the MLP model in neural networks," Acta

numerica, vol. 8, pp. 143-195, 1999.

[46] Y.a.P. A.a. W. F.a. Y. Y.a. Z. X.a. W.H. a. D. H. a. Q. L. a. M.R. Liu, "An

attention-based category-aware GRU model for the next POI recommendation," International Journal of Intelligent Systems, vol. 36, no. 7,

pp. 3174-3189, 2021.

Một phần của tài liệu Khóa luận tốt nghiệp An toàn thông tin: Phân tích Kết hợp các ứng dụng Android để phát hiện và phân loại ứng dụng độc hại bằng cách sử dụng học sâu (Trang 72 - 78)

Tải bản đầy đủ (PDF)

(78 trang)