TAI LIEU THAM KHAO

Một phần của tài liệu Khóa luận tốt nghiệp An toàn thông tin: Mô hình cộng tác phát hiện xâm nhập bền vững dựa trên học liên kết và mạng sinh đối kháng (Trang 95 - 102)

Tiéng Anh:

[1] Marek Pawlicki, Rafat Kozik, and Michat Choras (2022), “A survey on

neural networks for (cyber-) security and (cyber-) security of neural

networks”, Neurocomputing, 500, pp. 1075-1087, ISSN: 0925-2312, DOT: https://doi.org/10.1016/j .neucom.2022.06.002, URL: https:// www.sciencedirect.com/science/article/pii/S0925231222007184.

Preeti Mishra et al. (2019), “A Detailed Investigation and Analysis

of Using Machine Learning Techniques for Intrusion Detection”, [EEE

Communications Surveys & Tutorials, 21 (1), pp. 686-728, Dor: 10.

1109/COMST . 2018. 2847722.

Shuokang Huang and Kai Lei (2020), “IGAN-IDS: An imbalanced gen-

erative adversarial network towards intrusion detection system in ad-

hoc networks”, Ad Hoc Networks, 105, p. 102177, ISSN: 1570-8705, DOT:

https://doi.org/10.1016/j .adhoc . 2020. 102177, URL: https: // www.sciencedirect.com/science/article/pii/S1570870519311035.

Yiran Zhu et al. (2022), “Black box attack and network intrusion de-

tection using machine learning for malicious traffic’, Computers & Se- curity, 123, p. 102922, ISSN: 0167-4048, DOI: https: //doi.org/10. 1016/j.cose.2022.102922, URL: https://www.sciencedirect.com/ science/article/pii/S0167404822003145.

Phan The Duy et al. (2023), “Investigating on the robustness of flow- based intrusion detection system against adversarial samples using Gen-

85

erative Adversarial Networks”, Journal of Information Security and Ap- plications, 74, p. 103472.

Yifan Jiang, Shiyu Chang, and Zhangyang Wang (2021), “Transgan:

Two pure transformers can make one strong gan, and that can scale up”, Advances in Neural Information Processing Systems, 34, pp. 14745—

14758.

Rizwan Hamid Randhawa et al. (2021), “Security Hardening of Bot-

net Detectors Using Generative Adversarial Networks”, [EEE Access, 9,

pp. 78276-78292, DOT: 10.1109/ACCESS . 2021 .3083421.

Rizwan Hamid Randhawa et al. (2022), “Evasion Generative Adversar- ial Network for Low Data Regimes”, IEEE Transactions on Artificial Intelligence, pp. 1-13, DOT: 10.1109/TAT .2022.3196283.

Li Liet al. (2020), “A review of applications in federated learning”, Com- puters Industrial Engineering, 149, p. 106854, ISSN: 0360-8352, DOT: https://doi.org/10.1016/j.cie.2020.106854, URL: https: //www. sciencedirect.com/science/article/pii/S0360835220305532.

Aliya Tabassum et al. (2022), “Fedgan-ids: Privacy-preserving ids using

gan and federated learning”, Computer Communications, 192, pp. 299- 310.

Mohammad Rasouli, Tao Sun, and Ram Rajagopal (2020), “Fedgan:

Federated generative adversarial networks for distributed data”, arXiv preprint arXiv:2006.07228.

CSE-CIC-IDS2018 on AWS, https: //www.unb.ca/cic/datasets/

ids-2018.htm1, Online, 2018.

Mohamed Amine Ferrag et al. (2022), “Edge-IloTset: A New Compre- hensive Realistic Cyber Security Dataset of IoT and IloT Applications for Centralized and Federated Learning”, [EEE Access, 10, pp. 40281-

40306, DOI: 10. 1109/ACGESS. 2022. 3165809.

[14]

[21]

86

Mahmoud Said Elsayed, Nhien-An Le-Khac, and Anca D. Jurcut (2020),

“InSDN: A Novel SDN Intrusion Dataset”, JEEE Access, 8, pp. 165263-

165284, DOT: 10.1109/ACCESS . 2020 . 3022633.

Ashish Vaswani et al. (2017), “Attention Is All You Need”, arXiv.org,

URL: https: //arxiv.org/abs/1706 .03762.

Zihan Wu et al. (2022), “RTIDS: A Robust Transformer-Based Ap- proach for Intrusion Detection System”, [EEE Access, 10, pp. 64375-

64387, DOT: 10.1109/ACCESS . 2022. 3182333.

F. Sabahi and Ali Movaghar (2008), “Intrusion Detection: A Survey”,

Systems and Networks Communication, International Conference on, 0,

pp. 23-26, DOT: 10.1109/ICSNC. 2008.44.

Sheikh Rabiul Islam et al. (2021), “Explainable Artificial Intelligence Approaches: A Survey”, URL: https: //arxiv.org/pdf/2101. 09429.

pdf.

Luca Longo Giulia Vilone (2021), “Classification of Explainable Artifi-

cial Intelligence Methods through Their Output Formats”, URL: https:

//www.mdpi .com/2504-4990/3/3/32.

Giovanni Apruzzese et al. (2022), “Modeling realistic adversarial attacks against network intrusion detection systems”, Digital Threats: Research and Practice (DTRAP), 3 (3), pp. 1-19.

Kevin W. Bowyer et al. (2011), “SMOTE: Synthetic Minority Over- sampling Technique”, CoRR, abs/1106.1813, arXiv: 1106. 1813, URL: http://arxiv.org/abs/1106.1813.

Justin Engelmann and Stefan Lessmann (2021), “Conditional Wasser-

stein GAN-based oversampling of tabular data for imbalanced learning”, Expert Systems with Applications, 174, p. 114582.

[23]

[30]

87

Giovanni Apruzzese et al. (2020), “Hardening Random Forest Cyber Detectors Against Adversarial Attacks”, [EEE Transactions on Emerg- ing Topics in Computational Intelligence, 4 (4), pp. 427-439, Dot: 10.

1109/TETCI .2019.2961157.

Shuai Zhou et al. (2022), “Adversarial Attacks and Defenses in Deep

Learning: From a Perspective of Cybersecurity”, ACM Computing Sur-

veys, 55 (8), pp. 1-39.

Minguk Kang et al. (2021), “Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training”, arXiv: 2111.01118 [cs.cV].

Liyan Xu et al. (2022), “TGAN-AD: Transformer-based gan for anomaly detection of time series data”, MDPI, URL: https: //www .mdpi . com/ 2076-3417/12/16/8085.

Zilong Lin et al. (2022), “IDSGAN: Generative Adversarial Networks for Attack Generation against Intrusion Detection”, URL: https: //arxiv.

org/pdf /1809. 02077. pdf

SUBASH NEUPANE et al. (2022), “Explainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges, and Op-

portunities”, URL: https: //arxiv.org/pdf/2207 .06236. pdf.

Cosmas Ifeanyi Nwakanma ORCID et al. (2023), “Explainable Artificial Intelligence (XAT) for Intrusion Detection and Mitigation in Intelligent Connected Vehicles: A Review”, URL: https: //www.mdpi.com/2076- 3417/13/3/1252.

Shiyao Ma et al. (2022), “Privacy-preserving Anomaly Detection in

Cloud Manufacturing via Federated Transformer”, URL: https://arxiv. org/pdf/2204.00843. pdf.

Yanfang Fu et al. (2022), “A Deep Learning Model for Network Intrusion Detection with Imbalanced Data”, Electronics, 11 (6), ISSN: 2079-9292,

[35]

88 DOT: 10.3390/electronics11060898, URL: https: //www.mdpi.com/ 2079-9292/11/6/898.

Seulki Park et al. (2021), “The Majority Can Help The Minority: Context-

rich Minority Oversampling for Long-tailed Classification”, CoRR, arXiv: 2112.00412, URL: https: //arxiv.org/abs/2112. 00412.

Shaashwat Agrawal et al. (2021), “Federated Learning for Intrusion

Detection System: Concepts, Challenges and Future Directions’, URL: https://arxiv.org/pdf/2106.09527. pdf.

JooHwa Lee and KeeHyun Park (2021), “GAN-based imbalanced data

intrusion detection system”, Personal and Ubiquitous Computing, 25, DOI: 10.1007/s00779-019-01332-y.

Ngoc-Trung Tran et al. (2021), “On Data Augmentation for GAN Train-

ing’, IEEE Transactions on Image Processing, 30, pp. 1882-1897, DOT: 10.1109/TIP.2021. 3049346.

Wei Li et al. (2023), “EID-GAN: Generative Adversarial Nets for Ex-

tremely Imbalanced Data Augmentation”, [EEE Transactions on In-

dustrial Informatics, 19 (3), pp. 3208-3218, Dor: 10.1109/TII. 2022.

3182781.

Vignesh Sampath et al. (2020), “A Survey on Generative Adversarial

Networks for imbalance problems in computer vision tasks”, DOI: 10. 21203/rs.3.rs-45616/v2.

Chen Wang et al. (2022), “Poisoning attacks and countermeasures in intelligent networks: Status quo and prospects”, Digital Communica- tions and Networks, 8 (2), pp. 225-234, ISSN: 2352-8648, DOI: https:

//doi.org/10.1016/j.dcan.2021.07.009, URL: https: //www.

sciencedirect.com/science/article/pii/S235286482100050X.

[39]

[40]

[41]

[43]

[44]

89

Yi Shi et al. (2018), “Generative Adversarial Networks for Black-Box

API Attacks with Limited Training Data”, pp. 453-458, DOI: 10.1109/

ISSPIT. 2018 . 8642683.

Mohamed Amine Merzouk et al. (2022), “Investigating the practicality

of adversarial evasion attacks on network intrusion detection”, Annals

of Telecommunications, 77 (11-12), 763-775, DOI: 10. 1007 /812243-

022-00910-1.

Rizwan Hamid Randhawa et al. (2022), “Deep Reinforcement Learning

based Evasion Generative Adversarial Network for Botnet Detection”, arXiv: 2210.02840 [cs.CR].

Hong Ye He, Zhi Guo Yang, and Xiang Ning Chen (2020), “PERT: Pay-

load Encoding Representation from Transformer for Encrypted Traffic Classification”, pp. 1-8, DOI: 10.23919/ITUK50268 . 2020 . 9303204.

Radion Bikmukhamedov and Adel Nadeev (2020), “Generative trans- former framework for network traffic generation and classification”, T- Comm, 14, pp. 64-71, DOI: 10.36724/2072-8735-2020-14-11-64-71.

H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson Blaise

Aguera y Arcas (2023), “Communication-Efficient Learning of Deep

Networks from Decentralized Data”, URL: https: //arxiv.org/pdf/

1602 .05629. pdf.

Qinbin Li et al. (2021), “A Survey on Federated Learning Systems: Vi-

sion, Hype and Reality for Data Privacy and Protection”, URL: https:

//arxiv.org/pdf /1907 .09693. pdf.

Brendan McMahan et al. (2017), “Communication-efficient learning of

deep networks from decentralized data”, pp. 1273-1282.

Chenyou Fan and Ping Liu (2020), “Federated Generative Adversarial Learning”, CoRR, abs/2005.03793, arXiv: 2005 . 03793, URL: https:

//arxiv.org/abs/2005 . 03793.

[48]

90

Haomin Wang and Wei Li (2021), “DDosTC: A Transformer-Based Net- work Attack Detection Hybrid Mechanism in SDN”, Sensors, 21 (15),

ISSN: 1424-8220, DOI: 10.3390/s21155047, URL: https://www.mdpi. com/1424-8220/21/15/5047.

Remah Younisse, Ashraf Ahmad, and Qasem Abu Al-Haija (2022), “Ex-

plaining Intrusion Detection-Based Convolutional Neural Networks Us-

ing Shapley Additive Explanations (SHAP)”, Big Data and Cognitive Computing, 6 (4), ISSN: 2504-2289, DOI: 10.3390/bdcc6040126, URL:

https://www.mdpi.com/2504-2289/6/4/126.

91

Một phần của tài liệu Khóa luận tốt nghiệp An toàn thông tin: Mô hình cộng tác phát hiện xâm nhập bền vững dựa trên học liên kết và mạng sinh đối kháng (Trang 95 - 102)

Tải bản đầy đủ (PDF)

(102 trang)